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SECTION I
INTRODUCTION

Present and future efforts in gas discharge laser develop-
ment, laser fusion, isotope separation, combustion, atmospheric
physics, as well as other energy-related fields, rely on a quan-
titative understanding of electron scattering processes for a
variety of small molecules. The need for quantitatively ac-
curate electron-molecule scattering cross sections is putting
stringent demands on present theoretical methods. As this need
becomes more pressing, it is important to assess the scope of
those methods which are presently being used in the study of
electron-molecule collisions, to identify the key advantages
and limitations of the various methods and to see which tech-
niques are best suited for a quantitative study of the important
problems in molecular scattering such as the vibrational transi-
tions.

Straightforward application of the simultaneous vibrota-
tional close-coupling theory to the study of vibrational transi-
tions of electron-molecule scattering has met a severe compu-
tational difficulty. The number of channels of the coupled dif-
ferential equation is so large that it is almost impossible to
carry out the calculation with the capacity of the present day
computer even when 7-8 vibrational states are included. That is
the reason that the hybrid theory was proposed.

In this report, we made critical evaluations of theories
used for electron-molecule scattering calculation and found
out that the hybrid theory is best suited for the present e-CO
project. We further present a reformulation of this theory.
The vibrational transition cross sections of e-CO scattering
were computed in the energy range of 0-10 eV, based on the
present reformulation. The final results are reported.




SECTION II
REVIEW AND EVALUATION OF THEORY

In this Section, we present a review of the theoretical
approaches which have been used for the electron-diatomic mole-
cule scattering and discuss the advantages and disadvantages
of those approaches.

1. Semiclassical Approach

The calculations of electron-molecule scattering cross
section with the semi-classical approach such as the impact
parameter method and the binary encounter theory (Ref. 1) are
scarce, while they are abundant for atom, ion-atom, molecule
scatterings. The reason is that the deBroglie wavelength of
the incident electron is too large for the semiclassical ap-
proach to be appropriate for the study of electron-molecule
scattering.

2. Feshbach Approach and Boomerang Model

These approaches appear to be appropriate for describing
the electron-molecule resonance scattering (Refs. 2 and 3).
However, it is difficult to obtain rigorous ab initio solutions
from these methods. The shape of resonance cross section as
a function of the incident (kinetic) energy of the electron is
determined through resonance energies and widths. These are
treated as the empirical parameters in the present approaches.
Thus they become more or less phenomenological for the inter-

pretation of experimental data and do not have the capability
of predicting the experimental measurements. There is no doubt

that these methods are useful for the physical explanation of
a given experiment.
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This is the most general and realistic approach for electron-
molecule scattering. Only a few calculations for the rota-
tional transition of light molecule exist with the present
close-coupling theory (Ref. 11, 12 and 13). The results show
that the agreement with the experimental data is indeed very
good. However, to carry out the close-coupling calculation
for the vibrational and rotational transition cross section
is a formidable task, because the dimension of the coupled
differential equation is very large in that case. Therefore,
this method is impractical for the study of electron-molecule
vibrational and rotational transitions.

7. Fixed-Nuclei Approximation

In this approximation, both the separation of two nuclei
and the direction of internuclear axis of target molecule
are fixed during the collision process. There exist a number
of calculatiors for the vibrationally elastic cross sections
of electron-molecule scattering using this approximation
(Refs. 14, 15 and 16). 1In spite of the simplicity of the
present approach, the agreement with the experiment is fairly
good when the exchange and polarization potentials are pro-
perly taken into account.

8. R-matrix Theory

This approach was based on the fixed-nuclei approxima-
tion. The wavefunctions of internal region are computed in a
similar manner as the bound state approach and those of ex-
ternal region are obtained with the fixed-nuclei close-coupling
calculation. Both wave functions are matched on the appro-
priate boundary. However, in addition to the complexity of
this method, it has not yet been fully developed to evaluate
the vibrational transition cross sections (Refs. 17 and 18).

!,
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9. Adiabatic-Nuclei Approximation
for Rotational Transitions

It is not possible to obtain the rotational transitions
in the fixed-nuclei approximation. Thus the present scheme
was developed. In the adiabatic-nuclei approach, the scat-
tering amplitude for the rotational transitions is obtained
from

£g,0(0:0) = [AQ gg (D £(0,0,2) g, (R)

Here, £(0,¢,R) is the fixed-nuclei scattering amplitude and
ga(n). 98(9) are the initial and the final rotational wave
functions of the target molecule. It should be noted that
this approach is much simpler than the rotational close-
coupling theory where the rotational states are dynamically
coupled. When the SEP (Static + Exchange + Polarization)
potential are used for the calculation of cross sections, the
agreement with the experimental data are reasonably good.
(Refs. 19, 20 and 21).

10. Hybrid Approach

The hybrid theory was derived from the fixed- and
adiabatic-nuclei approach to study the vibrational and ro-
tationali transitions for electron-molecule scattering. The
condition of the fixed internuclear separation in the fixed-
nuclei approximation is relaxed and the vibrational states
of the target molecule are coupled dynamically. The simul-
taneous vib-rotational transition of target molecule are
obtained by incorporating the adiabatic nuclei procedure
(Refs. 22 and 26). For the calculation of vibrational and
rotational transition cross sections, the present approach
will be most appropriate from the practical point of view.
In this approach, it is not too difficult to couple the vi-
brational states up to V10 levels, while that is not possible




in the vib-rotational close-coupling theory. The numerical
results of the vibrational and rotational transition cross
sections for electron-nitrogen molecule scattering (Ref. 22)
show that the agreements with the experimental data are
good.

11. Adiabatic-Nuclei Approximation

for Vibrational Transitions

This is also called vibrational impulse approximation
(Refs. 23 and 24 ). The elastic transition matrix elements
are obtained as functions of the internuclear separations.
They are computed through the fixed-nuclei close-coupling
calculations performed at each internuclear separation. The
vibrational transition matrix elements are then obtained from
averaging the above elastic transition matrix elements over
initial and final vibrational wave functions. It is seen
that this method is simpler than the hybrid approach.

On the other hand, the elastic transition matrix elements
are, in general, violently oscillating functions of the inter-
nuclear separations for resonant wave, while they are smooth
function for non-resonant wave. Therefore, this method is
not suitable for evaluating the vibrational transition matrix
elements (or cross sections) for resonant wave. However, this
approach could be efficient for computing the vibrational
transition cross sections in the non-resonant energy region.

12. Multiple Scattering Method

The atoms in the target molecule are treated as inde-
pendent scattering centers for short range interaction poten-
tial. This method is basically similar to the "Two Potential
Approach" employed by us (Ref. 45) for studying intermediate an
high energy electron-molecule scattering and yields reasonable
results in those energy regions. Recently, some workers




applied this method to low energy (0~10 eV) electron-molecule
scattering (Ref. 25). The results show that this method

does not account for the substructures of the vibrational
excitation cross section in the low energy resonance region.
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SECTION III
DEVELOPMENT OF THEORY

Our review of theories for electron-molecule scatter-
ing indicates that the hybrid theory, as originally proposed
by Chandra and Temkin (Ref. 22), will be the most appro-
priate theoretical approach for the present purpose.

We have reformulated the hybrid theory in terms of the
total (electron + target molecule) angular momentum repre-
sentation. This has not been done in the original formula-
tion of Chandra and Temkin. In our reformulation, the
formulae of cross sections become more concise and thus they
can be easily programmed into computer code. Furthermore,
the relationship with the general and accurate vib-rotational
close-coupling theory is transparent because this theory is
also in terms of the total angular momentum representation.
Therefore, the hybrid theory can be improved systematically
through our reformulation in the future. The equations de-
rived according to the formulation of Choi and Poe (Ref. 26)
were used in the code programming for the present e-CO pro-
ject. In the following, we describe this reformulation which
is the main theoretical feature of this calculation.

(;; (r,R) of the electron-
diatomic molecule system satisfies thleollowing Schrodinger

The scattering wave function V¥

equation

av (Y (2,8 = v (2.3
j

vim, vim,

3




with

H= - . o v -V + V(r,R,Y) + eo(R)

Here, T is the position vector of the incident electron rela-
tive to the center-of-mass of target nuclei and R is the inter-
nuclei vector (see Figurel), and

B m(MA+MB) e MAMB
N . e i b
e MA+MB+"‘ N MA+MB

MA'MB and m are the masses of nuclei A and B, and electron,
respectively. The v is the vibrational quantum number, and

j,m, are the rotational quantum number and its projection.
V(r,R,Y) is the electron-molecule interaction potential with

Y the angle between T and R. eo(R) is the interatomic potential
in the ground electronic state of target moclecule.

In hybrid theory, the vib-rotational transition cross
sections are obtained from a synthesis of close-coupling theory
for vibrational states with fixed-nuclei approximation and
adiabatic nuclei theory for rotational states. The rotational
angular momenta of target molecule are neglected in H, that
is,

2 2 2
h 2 2 1 23 2 3 A 2
& V.2 a - (R ) - (R x vp)
A N e R %
2
h l 93 2 9
e -8 (R T‘R) (1)

The radial wave function and energy level, ¢V(R) and e,r are
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Figure 1.

Geometry of the Scattering Between an Atom and
a Diatomic Molecule.




obtained from

621 2 23 :
= fug 7 TWER R+ R0, (R) = e o (R k)

For vibrational transitions, the angular parts of vib-
rotational wave functions of target molecule are not con-
sidered in hybrid theory. Thus the scattering wave function

(*) (r R) is replaced by ?(+)(r R) in the Schrdédinger equa-

vjmj
tion“and
(+) ] A -
v - ; Sarer, () o (RIY, L EDDEY Rv) ()
1 r
ik -2 ky+ o A
vadih il MU g = £, Rl ) (3)

2u A
Here, k3 = —TS(E'EV) and r' denotes the polar angles of r with
¢ respect to B coordinate system in which the internuclear axis
é R is chosen to be z-axis. ;m,(R) = Dmm.(on,e .0) is the ro-
; tation matrix element. R is treated as parameters in the fixed
t nuclear approximation or hybrid theory. From Egqs. (1)-(3) and

¥ the Schrddinger equation, we have

gy LT LSRR LA P AL

;;7 . ‘v',ev
2y ' (m')
-—F V:Tv!.l'v'(r) ql?V“ciV(t)
h gaye e In*h
(e,2', 3 |m (4)
11




L}
9:?v!,lv(r) ;:ﬁ

k. 1/2
L' (Tvw .
: (F;. IR URYORIE SRR T v Ggrgs (F)HAF (02}
(5)

Here,

(m')
vzovo"nv-(r)

= COME e @ MArorolo ettt oy, &

Ve () = [R2aR 0, (RIV, (£, R0, (R)

Pz.v.(r) = kv,r jz,(kv.r)
Gyiye (X)) = =k, ¥ nz.(kv,r) (6)

Vx(r,a) is the Ath harmonic component of V(r,R,y). It is seen
that m', the internuclear axis component of incident electronic
angular momentum (which is also that component of total elec-
tronic angular momentum of electron plus the target molecular
compound system), is conserved in hybrid theory or in fixed
nuclear approximation. Thus, the coupled differential equation
is solved separately for each m' and it is sufficient to con-

sider non-negative m', since
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Sy .

i

v‘m‘) (r) - v(’m') (r)' g(m.) (t) = 9( m') (r)

L'vt A% L'v* A% L'viev L'v', v

(')  _ p(-m)
Tz'v' Ly z'v' W (N
T(m')

R'v' . v is the vibrational transition matrix element of
’
hybrid theory. Thus we have scattering amplitude.

1/2
L4 ] - 4n 1/2 (m')
V',V(R'G'O) (W) o8 ;u;m(zl'*l) Tl’v' I.v m, (ﬁ)D on (R):’:;m(e ' $)

The differential, integral and momentum transfer cross sections
of the vibrational transitions in the hybrid theory are, then,
given by

do kv'
vev! 3 .3 2
@ = AR, JRee)

= f‘:m' ¥ 0" "(2041) Y2 (e ruto ] a) {2 2-m* | Ao)
L'4m’

(m')

2
X T!’|v. ','v Y".u(e") l

1
B, (v+v') P (cos0) (9)
X 2 z; A A

13




b do
1 Oyayr = Ja0 X (0)

- 517 Bo (vev')

k ky
- 4 (m*) 2
Sy oo Tetv el (10)
3
E |
1 a
1 oM, - Jaa (1-cos6) IR ()
|
- gs, (By (vev') = 3 By (vav')) (11)
Here,
i P 1__((2041) (20441) (2041) (2Ea1) /2
il zz};' 20!
ii'm’
x{¢'ol'c|ro) (2olo|ro) ('m T =R |amt =@ ') (tm' T-R* | Am' -W")
x @) glm) (12)

Livt,av IV, TV

For deriving the last part of Eq. (9), we have used well-known

relations (Ref. 27), {

3 (3ymyIgmy | Igmy +mo) (3gmy +myd qmemy | J gm, +m) (3 pmy 3 me=m, | jgm)
m
2

BER—————

j13235}

343336
12 (13)

- (~1)jl+j3+j3+j‘((2js+l)(2j6+1))1/2<31mlj6m|j3m1+m){




and

3,353,

= (-1)31+32+3i3+i4 (jlmljzmz|jsm1+m2)(jsm1+m2j‘m4|j3m3)
(14)

When solving the coupled differential equation (Eq. (4)), the
L}

real (rather than complex) wave functions fé?vz zv(r), with

’

following real boundary condition

(m*) 172 (m')
fl'v‘,zv(r) ::: (kv) (cl'L v' vrz'v'(t) o Kl'v',zvcz'v'(r))
(15)

are more convenient to use.

Introducing square matrices, g(m‘)(r), f(m')(r), T(m'), K(m')
I and A as

’

g‘n.)(r) - (g(m') (r))' f(m.’(t) o (f(m) v(r))'T(m.)-(T(m')

L'v', v L'y, L'v', v
(m*) _ p(m*) R 1/2
K (Kgvgr,apde T = (47 8,,,800000 A = (k;1%6,,,6..0)  (16)
we obtain
g(m')(r) = f(m.)(r) pm') (17)
(m')
p(m') o+ K —y I (18)
1-iK
with
D™') w pA~Ll(g4ip®' )y, (19)
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K(m') is the reactance matrix and it is real, symmetric, i.e.,

(m') (m') (m') - (=)'t (m')
Kgryt,av = Kgy,pryre Thus, Toogn py = (51) Toy, o'y 20d
the principle of detailed balance

kzo

2
vivav' = k

v'Oviay (20)

is satisfied. The numerical procedure of evaluating the reac-
tance matrix is given below. Let U(m')(r) be a square matrix
such that each column is a real solution of coupled differen-
tial equation (Eq. (4)) with u/™?(0) = 0 and all columns are
independent. Then,

£™) ) = g®) () ™) (21)

for all r. C(m') is a coefficient matrix not yet known. 1In
the asymptotic region,

o™ () ™) Al p(r) + G(r)k (™)) (22)

as can be seen from Eq. (15). Here

F(r) =(F£'V'(r)69,'!,6\l'v)' G(r) = (Gzlvt (r)anzsv.v) (23)
Differentiating Eq. (22) with respect to r, we have
™ (™) = AL + 6t (k™A (24)

Multiplying Egs. (22) and (24) by G'(r) and G(r) on the left,
respectively, and subtracting from each other, we obtain

@' (r)u™) (r) - cr)u™) ' (ry)ye™') o 2 42 (25)

"

Here, we have used the relation

F(r)G'(r) - F'(r)G(r) = =A% (26)




and the fact that all diagonal matrices commute with each
other. Multiplying Egs. (22) and (24) again by F'(r) and
F(r) on the left, respectively, and subtracting from each
other,

(F (U™ ) (1) = F(0)u™) r(r))c™) o pxm'), (27)

L}
Obtaining c(m ) from Eq. (25), we evaluate the reactance
matrix from Eq. (27), that is,

k(m") -A'l(p'(ro)u"“"(ro)-p(ro)u"""'(ro))

’ (m') (m'), -1
(G (ro)U (ro)-G(ro)U (ro)) A (28)

®

r, is a point in the asymptotic region. The (partial) cross

section
2
(m') 4n (m')
gt L o |T
e x—v7 zz:z Ly, oy (29)

is used for studying the resonance scattering cross sections.

In hybrid theory, the scattering amplitude fv'j'm!,vjm.(e'¢)
for the simultaneous vib-rotational transition (vjmj)+2v'j'ﬂ3)
is obtained from close-coupling scattering amplitude of vibra-
tional transition with fixed nuclear approximation, fv,'v(ﬁ,6,¢),
given by Eq. (8) as follows

A * A a ~
fV'i""j"’imj (0,0)= fak ¥y B fv',v(R'e"”ijj (R} (30)

This is the adiabatic nuclear approach.

Carrying out the integration over R, we have




i

g

= (Ar_1/2 22+1)Y/2{g ' -me§ *m? | Im, ) ‘

:v'j'mgijmj(e'¢) ( v v') Jz;z 37 T3S %

: ~J

with 4 %

((23'+1) (2j+1)) (m") : ’

o = (2'm'j'0|Im')T {¢m'jo |Im*) ;

g g 3.9 L', Av 4

v'jrer,vis 2J+1 E; ¢32)
As can be seen from Egs. (7) and (32).
(_1)j'+2'+J - (_l)j+z+J (33)

For deriving Eq. (31), we have expresed Y;. !(ﬁ), ij'(ﬁ) in
terms of rotational matrix elements. Next, %he Clebsgh—Gordan
series for each pair Dzl, Dj' and Dz, Dj, and the ortho-
gonalities of the rotation matrix elements have been used.

~

f; is seen that Tv'j'l',vjz of hybrid theory corresponds to
Tv'j'l',vjz' the transition matrix element of total angular
momentum representation, of the vib-rotational close-coupling
theory. Furthermore, the parity (-l)j'”"+J is known to con-
serve in that theory. Therefore, the above correspondence
provides us with a detailed comparison between vib-rotational
close-coupling and hybrid theory. This includes not only cross
sections but also transition matrix elements, for electron-
diatomic molecule scattering. The differential cross section
of vib-rotational transition vj?*v'j' in the hybrid theory is,
then, given by

dd -+ ' [ k ’ 1 2
e L) 'E;‘v 73+ E'va'j'm; .vjmj‘e'”l (34)
mjmj ]
1
- B, (vij+v'j')P, (coso)
X_2(24+1) ; A A

v
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a1

e

With
B, (vi+v'3')

» sy z;(2J+1)(23+1)((29.°+1)(2I'+1)(2z+1)(2I+1))1/2
2 £y

3
AJ J)(A3T =
-t J ~J*
x (201 o| Ao} ("°I°"‘°’§j.,,.;-t %,u ;Tv'j'z'.vjz Tor§ I ,viE
(35)
Here, we have used Egqs. (13) and (33).
The integral and momentum transfer cross sections for the
transition, vj+v'j', in the hybrid theory are given by
do 1
Cyporrye = J20 AL (0) o AT 5 (vsevrs
k, " (23+1)
4 ~J 2
g ol DR L L SRR (36)
k. “(23+1) 5 .
v LT
and
do
(M) & e vi+v'y!
oM egr = fari-cose) gp¥iv'il (o)
4n 1
= (B_(vi+v'j') - B, (vi*v'j')) (37)
k,Z(23+1) © I
The principle of detailed balance
k 2(2j+1)0 = k2, (25"
v VjW'j' vo( j +1)°V’j'*vj (38)
~J & L'+ ~J.
is satisfied, since v'iteY,vie (-1) ijz,v'j'z'
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From Egs.

by applying the closure property of spherical harmonics to
In fact, one can show that

Eq. (30).

using Eq.

(9)‘(11) ’

By (v*v') = I%?I 2; Bx(vj*v'j')
b

(14) .

(36), and (37), it is seen that

(39)

(40)

(41)

(42)

et et i N
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|
|
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SECTION VI
THE PROCEDURES OF COMPUTATION

To carry out the vibrational close-coupling calculation,
the information of the input interaction potential is neces-
sary. Therefore, we describe here the computational pro-
cedures of the input potentials in the following.

1. Input Potential

The electron-diatomic molecule interaction potential is
written as:

v =vi{stat) (. g.v) + vPOL) (1 2y

+ viex) (43)

Here, V(Stat)(r,k

in the ground electronic state of the target molecule.

+Y) is the static electron-molecule potential

V(pOI)(r,R,Y) is the long range polarization potential due to
the induced polarizabilities of the molecule in the presence
of the incident electron. This potential partly takes into
account the electronic distortion of target molecule. V(eX)
is the local or non-local exchange potential.

a. Static Potential

This is the sum of Coulomb interactions between the in-
cident electron and the electronic clouds of CO in the ground
state

(102 202 302 40? 502 121t (44)

which is a closed shell configuration, and between the inci-

dent electron and nuclei. If one makes the harmonic expansion,
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Frren e s .

v(Stat)(r,R,Y) =J vx(stat)(r,g)px(cosy) (45)
A

then it is seen that
A

r
V{Stat)(r,R) = e2 %;:Ijr'zdr'ox(r',R) ;EXTI
>
-z 295;—I 2, (1) iéi;_r
N T - B(-- T (46)
rb) ra>

Here, p,(r',R) is again Ath harmonic component of the elec-
tronic density p(r',0',R) of CO given by

plx',0',R) = [l¢ (x',0',¢',R) |2 (47)
(s

¢u(f',n) = ¢a(r',e',¢',k) is the molecular orbital wave func-
tion in terms of single center coordinates with 0',¢' the polar
angles with respect to R. ) is the summation over all occu-

pied orbitals. And o
r, = max or min (r,r') (48)
<
raz = max or min (r,aR)
rb< = max or min (r,bR)

with
a = MA/(MA+MB) » b = Ma/("a*’"n) (49)

It is convenient to express the LCAO molecular orbital wave
function in terms of the single center expansion such as

22




¢, (x',0',¢',R) = %‘az""“”mu(e""") (50)
in order to evaluate the static potential. Then

(e yR) = A T (1) %[(2e41) (20'+1) 172 <002 0| ho><im_2£'-m_|Ao>
g Tl I afe a a

x¢a\2(r'.R) @azu(r"a) (51)

Harris and Michael (Ref. 28) have developed recurrence rela-
tions for the purpose of evaluating the coefficient of expan-
sion ¢uz(r',R) from Slater type orbitals which have different
centers. Faisal (Ref. 29) has made a computer program for com-
puting the static potential using the above recurrence rela-
tions. It was found that this program contains an error which
was corrected later by Chandra (Ref. 30). For the present e-CO
project, we have made our own (efficient) computer program to
evaluate the static potential.

For the molecular wave function of CO in the ground
electronic state, Eq. (44), those obtained by McLean and
Yoshimine (Ref. 31) were used for the computation of static
potential. They performed the self-consistent field calcula-
tion with an extended basis set with 17 Slater type atomic
orbitals centered each on carbon and oxygen nuclei. The vi-
brational close-coupling calculation requires the numerical
values of this potential at each internuclear separation R.
We have evaluated the potential for R = 1.8, 1.898, 2.015,
2.132, 2.249, 2.366, 2.483 a, for which the molecular wave
functions were given in Ref. 27. The contributions of some
harmonic components of the static potential are shown in

Figure 2 at the equilibrium internuclear separation

Ro = 2,132 a,- The sharp kinks in that figure corres-
ponds to the centers of carbon and oxygen nuclei. In Figure
3, the variation of these harmonic components are illustra-
ted as functions of the internuclear separation R. As this

separation decreases, that is, as the carbon and oxygen
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Figure 2. The Harmonic Components of Static Potential at
the Equilibrium Distance of CO.
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Figure 3. Variation of Static Potential as Functions of
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nuclei are closer to each other, the depth or the height of
the kinks increases. 1In particular, the even components of
the static potential become more attractive in this case.

The dominant contributions of the long range part of
the static potential mainly come from the permanent dipole
and quadrupole moments of CO as follows

v, (r,R) D—%‘l

o

vz(r,R) o Qigl

(52)

We obtained D(Ro) = 0.116, Q(Ro) = 1.60 in a.u. from the

above wave functions. The experimentally measured values of
these moments are 0.044, 1.859 a.u. respectively. Therefore,

a discrepancy exists between the experimental and the theore-
tical dipole moments. The effect of this discrepancy will be
discussed in Section VI, when the elastic momentum transfer cross
sections are presented. The vibrational matrix elements of the

static potential Vé‘é?at)(r) (See Eq. (6)) were obtained using
’
the vibrational wave function ¢y (R) generated from Levin's C-0

potential (Ref. 32). To obtain the numerical values of V{Stat)(r,R)

at much finer mesh points of R, interpolation or extrapolation
procedures were necessary.
b. Polarization Potential

The polarization potential due to the induced polari-
zabilities of target in the presence of incident electron
is of the form

vPO) (¢ Rr,y) = = Lo (o (R)+a, (RIP,(cosy)]  (53)
2r

i ¥
x {l-exp[-(;—) 1}
L~
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Here, co(R) and az(R) are the spherical and nonspherical
polarizabilities, and r. is the cutoff radius. The empirical
method of determining this radius will be discussed later.

We have made a linear approximation for the polarizabilities
to estimate them for each internuclear separation R as follows

ao(R) uo(Ro) + aé(Ro)(R-Ro)

(54)

n

ay (R) = ap(Ry) + “5(30)(3‘30)

Here, the prime denotes the derivative with respect to R.

]
The quantities ao(Ro), ao(Ro) and uz(Ro) of CO were experi-
mentally measured (Ref. 33 and 34) and they are

ao(no)- 13.294 ¥ ao'(Ro) = 5.156 (55)

ay (R))= 2.384

in atomic units. However, measurements on u;(Ro) are not
available. Thus, we have determined a;(Ro) from the molecu-
lar wave function using a method described below. It is
known that (Ref. 35)

a (R) = %(u"(R)+201(R))
o (56)

ay(R) = 2R - at(r)

with

a''(R) = a,, (R)

T

(57)

ol (R) = o, (R) = a  (R) :
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The molecular axis was chosen to be z-axis in the above expres-
sion. In terms of the molecular wave function ¥, the perpen-

dicular component of target polarizability is given approxi-
mately as

2.2

oxx(R) L 4n<x1 > (in a.u.) (58) |

Here, n is the number of electrons in the target CO and

* 2
<x¥> = far ¥ x ¥ (59)

The x; is the x-coordinate of ith electron. Since ¥ is anti-
symmetric for all electronic coordinates, the above expecta-
tion value is independent of i. It can be shown that

2

<xy> = %% [r4 dr'(po(r'.R) - % po(x'+R)) (60)

in terms of the harmonic components of the electronic density.
From Eqs. (56)-(58), we have

az(no) = 2{u°(R°) - axx(no)}

g .3

: = 2{a, (R) - 4n<xi>R-=Rb (61)
a;(no) = 2{a;(k°) -a,' (R)} ?
a . .22 ;
= 2{00'(R°) - 4n a§<xi>nnnl TN ‘

We have computed <x:>2 from the molecular wave function of
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McLean and Yoshimine. The results are shown in Table 1 in
atomic units.

TABLE 1
THE SQUARE OF THE MEAN SQUARE DEVIATION FOR X-

COORDINATE OF TARGET ELECTRON AS FUNCTION OF THE
INTERNUCLEAR SEPARATION

R 1.898 2.015 2,132 2.249 2.366

<x§> 0.2714 0.2810 0.2902 0.2991 0.3077

When the above value of R = 2.132 is substituted into Eq. (61),
it is seen that the ab initio result for m*(Ro) is somewhat
bigger than the experiment. Therefore, we normalized the above
;ablg gy multiplying 0.745 to satisfy Eq. (61) and found

E§<xi>R=Ro from 5-strip derivative formula (Ref. 36). The

“i(Ro) is then obtained from Eq. (62). Our final result is

ué(Ro) = 1.653 in a.u. (63)

c. Exchange Potential

The number of channels of the vibrational close-coupling
differential equation is very large. The treatment of full
non-local exchange for the present project is an unmanageably
complex task. Therefore, it is desirable to employ an approxi-
mation scheme for the exchange effect. There exist two ap-
proximation schemes, the orthogaonlization method (Refs. 16 and
22 ) and the local exchange potential (Refs. 37, 38, and 39 ).
It was found that the inclusion of the local exchange potential
in the vibrational close-coupling calculation is more tract-
able and yields better results for the vibrational transition
cross sections than that of the orthogonalization method as
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discussed in subsection 2 of this section. Therefore, we
describe below the procedures of computation for the local
exchange potential. In the present work, we have adopted

a procedure which was first derived by Slater (Ref. 37) in ad-
dressing the bound state problem, and used by Hara and others
(Refs. 38 and 39) for the electron-molecule fixed-nuclei elas-
tic scattering calculation. It is given by

v 8,y = - 2 K (r,RyIF() (64)
with 2
F(n) = % + l;n log I%;%I (65)

Here, kF(r,R,y) is the Fermi momentum, which is obtained from

kg (r,R,y) = (3n%p(r,R,11)1/3 (66)

p(r,R,y) is the electronic density of target molecule and

n n(x,R,y)

k(r,R,y)/kF(r,R,y) (67)

The k(r,R,Y) is the local wave number of the incident or
scattered electron. It is approximately given as

k(r,R,y) = [2(E+I(R)) + k2 (r,R,v)1'/? (68)

E is the incident (kinetic) energy and I(R) is the ionization
potential of target molecule as a function of the inter-
nuclear separation R. Therefore, the present local exchange
potential is energy dependent. However, it is a slowly
varying function of E and the vibrational energy spacings

e g
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(0.2 v 0.3 eV) are small compared to I(R). Thus, the small
difference between the incident and the scattered energies
was neglected in the present calculation. For the ioniza-
tion potential I(R). we used the values in Table 2.

TABLE 2

THE IONIZATION POTENTIAL OF CO AS FUNCTION OF THE
INTERNUCLEAR SEPARATION

R 1.8 1.898 2.015 2.132 2.249 2.366 2.483

I .52845 .53698 .54634 .55437 .56053 .56427 .56514

The entries of the above table are in atomic units and were
presented again by McLean and Yoshimine (Ref. 31). The local
exchange potential was represented by the following harmonic

expansion

vieX) (¢ r,y) = § vi®*) (r,R)P, (cosy) (69)

It should be noted that the use of the harmonic expansion

for the density as in Eq. (51) is not convenient in this case.
The computation of harmonic coefficient Viex)(r,R) was mainly
obtained on the direct numerical integration, because the local
exchange potential was expressed in terms of the density with

non-integer power.

In Figure 4, we illustrate the contribution of lccal ex-
change potential at R = Ro and E = 1.7 eV. It mainly affects
the spherical part (A=0 component) of the potential and makes
this potential more attractive. The A=2 component of the poten-
tial also becomes slightly deeper due to the local exchange
potential.
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Figure 4, Effect of the Local Exchange Potential at the
Equilibrium Distance of CO and at E=1.7 oV,
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Finally, the vibrational matrix elements of polarization
A

vv,(r) were obtained as described in

and exchange potential V
the static potential.

2. Vibrational Close-Coupling Calculation

The number of channels Nc of the coupled differential
equation in hybrid theory is given by

- a5 L
Nc vmax X (zmax m'+l) (70)

Vmax' zmax are the number of vibrational states and the

maximum partial wave, respectively, included in the calcula-

Here,

tion. The m'=0,1,2...correspond to o-, n-, §- ... scattering
waves. As mentioned earlier, the above equation shows that

the number of channels is very large even when 3-4 vibrational
states are considered, and thus the calculation with éomplete
treatment of exchange effect is an unmanageably complex task.
It is desirable to employ an approximation scheme for the ex-
change effect. Furthermore, it is difficult to achieve the
complete convergence on the numbers of both vibrational states
and partial waves as seen again from Eq. (70). An optimal
choice for Vs Emax will be necessary. We were less con-
cerned about the convergence on partial waves, because the

main interest in the present e-CO project are the vibrational
transitions. While the partial wave convergence is important
for studying the elastic scattering, it does not affect signifi-
cantly the vibrationally inelastic scattering. The reason is
that the partial wave convergence is mainly determined from the
centrifugal potentials which are independent of the internuclear
separations. The vibrational transitions originate from the
internuclear dependence of the potentials. However, we put
some emphasis on the inclusion of vibrational states. Two
approximation schemes exist for the exchange effect as stated
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in subsection l.c. They are the orthogonalization approaci and
the inclusion of local exchange potential. These approaches
have been used in the fixed-nuclei calculation for vibrational-
ly elastic scattering.

a. The Orthogonalization Approach

In the orthogonalization approach for the exchange effect,
the scattering waves are made to be orthogonal to all elec-
tronic orbitals of target molecule. This approach was impli-
citly employed by Chandra and Temkin (Ref. 22) in their study
of e-N2 vibrationally inelastic scattering. They performed

vibrational close-coupling calculations only for resonant

ng-wave which gives the dominant contribution to the cross
sections and for which the orthogonalization procedures are
not necessary because “g orbitals are not occupied in target
molecule. That is, the incident wg—wave is already orthogonal

to all orbitals in the target. For all other non-resonant

partial waves, the orthogonalization procedures were included
with fixed-nuclei close-coupling calculation and the adiabatic-
nuclei approximation was applied to the vibrational transi-
tions (See subsection II.1ll). They produced reasonably re-
sults when compared with experimental data.

To apply the above orthogonalization approach to our situa-
tion is more complex. We have to study the vibrational transi-
tions of e-CO scattering in 0-10 eV of low energy region, in

particular, around 1.7 eV 2

-shape resonance of e-CO scattering.
The n-orbitals are occupied in CO and the numerical procedure
in which the incident m-wave is made to be orthogonal to the
orbitals of target electron for all values of internuclear
separation, R, in the vibrational close-coupling approximation
is very tedious. Therefore, we performed calculations in a

similar manner to the above e-N2 scattering, that is, the




vibrational close-coupling calculation was carried out without
the orthogonalization procedure for the resonant n-wave; and a
fixed-nuclei close-coupling calculation was made for non-
resonant g, §, ... waves with the orthogonalization procedures.
The static + polarization potentials described in the subsec-
tions l.a. and 1.b. were used. The cutoff radius r. in

the polarizaticn potential is roughly given by the boundary of

is effective when the incident electron is outside of the elec-
tronic density of target. However, there are no strict theore-
tical criteria for the precise value of cutoff radius ro- There-
fore, it was determined in an empirical manner as follows.

We first put vmax=1 and carried out the m-wave close-coupling
calculation for each value of r.. This is quantitatively very
close to the fixed-nuclei close-coupling calculation for elastic
scattering of R=R°. We chose the value of " for which w-wave
resonance peak occurs around experimentally observed resonance
energy E=1.75 eV. As one can see in Figure 5, the positions

of the resonance peak are sensitive to the choice of r,. For
rc=1.50 age the resonance energy is around E=1.5 eV, but for

X ™ 1.51 age it is around E=1.7 eV. It was further found that
non n-waves (0,8...) do not give any vibrationally elastic
resonance peak in this energy region for reasonable value of r.
The contribution of these waves to the cross sections are

mainly the background of the mw-resonance.

The coupled differential equation was integrated out from
the origin up to 20 a, where the static dipole potential has
already become very small. We truncated that potential beyond
this region. The five partial waves (% values) were coupled.
After the cutoff radius r, was determined, the n-wave vibra-
tional close-coupling calculations were performed with 7-10
vibrational states included and with the same number of partial

waves as above. The contributions of ¢,§... waves to the
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Figure 5. The Sensitivity of the n-Resonance Peak to the Cut-
off Radius Without the Local Exchange Potential.




vibrational transition cross section were again found to be

small in this energy region.

The results show that much sharper substructures appear
in the vibrational excitation cross section than those of
experimental measurements, and the agreements between theory
and experiment are generally poor. The sample result for
0+1 vibrational excitation is shown in Figure 6. This implies
that the exchange effects in vibrationally inelastic scat-
terings for e-CO are more important than those of e-Nz. The
sensitivity of the cross section to the cutoff radius r.
arises from the fact that the radius is somewhat small. Thus,
the polarization potential is signficantly large even inside
the electronic cloud of the target molecule. The radius r.
‘that is smaller than the approximate boundary of the above
electronic cloud is less physical and is partly due to the
shallow nature of the spherical potential Vo©

b. The Local Exchange Potential Method

As we have seen in the subsection l.c., the addition
of the local exchange potential makes Vo deeper. For the
reasons discussed above, the proper treatment of exchange
effect which has reasonable complexity for the present pur-
pose seems to be the inclusion of local exchange potential.
As described in that subsection, this potential is energy de-
pendent. Thus, at each incident energy, it should be com-
puted for the close-coupling calculation. To save computation
time, we have stored the most time consuming but energy inde-
pendent Fermi momentum kF(r,R,Y) in the program.

The cutoff radius r, was determined again with the local
exchange potential using the method described above. We ob-
tained rc-1.945 which is outside of the electronic cloud of
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target molecule. The polarization potential becomes small in-
side region and thus the cross sections are less sensitive

to r, in this case. With static + local exchange + polari-
zation potential, the vibrational close-coupling calculations
were carried out for all resonant (m) and non-resonant waves.
Seven vibrational states and %2=0,1,2,3,4 were coupled to-
gether. Therefore, the coupled differential equations are of
35,28,... channels for o-, -, ... waves, respectively. The
results are reported in the next section.
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SECTION V

RESULTS OF CALCULATION AND COMPARISON
WITH EXPERIMENTAL DATA

We have computed the integral, differential and momentum
transfer cross section for the vibrationally elastic and in-
elastic scattering of CO in 0.1 ~ 10 eV of the energy range.

In Table 3, all integral cross sections in the above
energy range are tabulated. The total energy E and the inci-
dent (kinetic) energy E|c are in units of eV. The cross

sections are in units of a.u. (aoz). Note that the relation

E=Einc+evi is satisfied. Here, evi is the initial vibrational
energy level of CO and €o is set to zero. In the table, atn
should read as axlotn. The vy and Ve are the initial and the
final vibrational quantum number, respectively. The diagonal
entries of the table are the vibrationally elastic cross sec-
tions, that is, Vi=Ve and the upper diagonal entries are the
vibrational excitation cross sections. The (vibrational) de-
excitation cross sections are tabulated under diagonal entries.
It can be seen from the table above that detailed balancing

k 2 R

g

v wvesvy' kv'0

v'+v

is satisfied. The above results are the sum of o-, n-, and
§-wave partial cross sections. The contributions of the higher
scattering waves to the cross sections are found to be small.
Furthermore, the major contribution to the vibrational transi-
tion cross sections and the sharp resonance peak of elastic
scattering arise from the m-wave. The o-, 6- ... waves con-
tribute only to the background of the vibrationally elastic
scattering cross section.
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THE ELASTIC AND VIBRATIONAL TRANSITION CROSS
SECTIONS OF ELECTRON-CARBON MONOXIDE SCATTERING

TABLE 3

E = 0.1
0
Ve
Einc vi
0.1 0 9.3751+1
E = 0.2
Ve 0
Einc vi
0.2 0 9.8996+1
E = 0.3
0 1
Ve
Einc Vi
0.3 0 1.0181+2  4.3740-1
0.0343 1 3.8280+0 9.0932+1
E=0.4
0 . i
Ve
Einc s
0.4 0 1.0353+2  7.1855-1
0.1343 1 2.1404+0 9.8068+1
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TABLE 3 (continued)

E = 0.5
v 0 1
f
Einc vi
0.5 0 1.0419+2 7.8265-1
0.2343 1l 1.6703+0 1.0267+2
E . 0.6
v B 1 2
E. R
inc i
0.6 0 1.0416+2 7.8012-1 1,3966-3
0.3343 1 1.4002+0 1.0409+2 1.2118+0
0.0719 2 1.1662-2 5.6375+0 9.4739+1
E = 0.7
v 0 1 2
E v, f
inc i
0.7 0 1.0381+2 7.5167-1 1.9294-3
0.4343 1l 1.2116+0 1.0546+2 1.5419+0
0.1719 2 7.8588-3 3.8963+0 1.0121+2
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TABLE 3 (continued)

E = 0.8

Ve 0 1l 2 3
Einc Vi
0.8 0 1.0335+2 7.2%27-1 1.9526-3 8.5472-4
0.5343 1 1.0829+0 1.0587+2 1.6186+0 1.8485-3
0.2719 2 5.7460-3 3.1811+0 1.0375+2 8.5229-1
0.0127 3 5.3705-2 7.7570-2 1.8198+1 8.9521+1

= 0.9

Vg 0 1 o 3
E, V.
inc
0.9 0 1.0299+2 7.0249-1 2.0096-3 2.4258-3
0.6343 ' 1 9.9679-1 1.0580+2 1.5845+0 4.3656-3
0.3719 2 4.8638-3 2.7027+0 1.0596+2 2.1398+0
c.1127 3 1.9366-2 2.4562-2 7.0584+0 9,.9051+1

e s s




TABLE 3 (continued)

E=1.0
v 0 1 2 3

Einc Vi
1.0 0 1.0300+2 7.0089-1 2.0768-3 3.2217-3
0.7343 1 9.5453-1 1.0552+2 1.5414+0 4.7369-3
0.4719 2 4.4013-3 2.3987+0 1.0712+2 2.4224+0
0.2127 3 1.5144-2 1.6350-2 5.3732+0 1.0465+2

E 1.k |

v 0 1 2 3 4

Einc V. f
) | 0 1.0372+2 7.3687-1 2.5617-3 3.5215-3 2.9109-5
0.8343 1 9.7156-1 1.0534+2 1.5417+0 5.4547-3 2.4641-4
0.5719 2 4.9276-3 2.2492+0 1.0748+2 2.5015+0 8.5274-3
0.3127 3 1.2386-2 1.4551-2 4.5743+0 1.0610+2 2.2516+0
0.0569 4 5.6269-4 3.6126-3 8.5694-2 1.2374+1 9.5435+1




TABLE 3 (continued)

E= 1,2
v 0 1 2 3 4
E \'4 £
inc i
3 O 0 1.0577+2 8.5571-1 5.6754~3 5.0226-3 7.4551-5
0.9343 1 1.0990+0 1.0571+2 1.6442+0 8.8695-3 4.4761-4
0.6719 2 1.0136-2 2.2864+0 1.0774+2 2.5050+0 1.1145-2
| 0.4127 3 1.4603-2 2.0077-2 4.0777+0 1.0805+2 3.1005+0
é 0.1569 4 5.7015-4 2.6653-3 4.7723-2 8.1559+0 1.0342+2
E=1.3
Vf 0 1 - 3 4 5
E, %
inc i
X:3 0 1.1040+2 1.1953+0 2.3270-2 9.7490-3 2.2487-4 4.3297-4
1.0343 1.5024+0 1.0745+2 2.0378+0 3.2490-2 1.7043-3 2.4608-5
0.7719 2 3.9193-2 2.7306+0 1.0852+2 2.6577+0 1.5637-2 1.6964-4
0.5127 3 2.4718-2 6.5539-2 4.0008+0 1.0913+2 3.4098+0 4.8784-3
0.2569 4 1.1379-3 6.8614-3 4.6981-2 6.8054+0 1.0568+2 8.6102~1
0.0044 5 1.2858-1 5.8142-3 2.9913-2 5.7141-1 5.0532+1 8.8574+1
46
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TABLE 3 (continued)

E=1.4
0 1 2 3 4 5
Einc i
1.4 0 1.2033+2 2.2870+0 1.4561-1 3.7753-2 1.4317-3 2.1449-3
1.1343 1 2.8228+0 1.1272+2 3.4442+0 1.8505-1 1.2791-2 2.7654-4
: 0.8719 2 2.3381-1 4.4809+0 1.1148+2 3.3354+0 4.8583-2 1.0962-3
; 0.6127 3 8.6260-2 3,4256-1 4.7459+0 1.1046+2 3.5422+0 1.8416-2
: 0.3569 4 5.6160-3 4.0653-2 1.1868-1 6.0812+0 1.0847+2 3.5932+0
0.1044 5 2.8769-2 3.0051-3 9,1569-3 1.0810-1 1.2286+1 1.0090+2
E=1.5
0 1 - {f 3 4 .
Einc i
1.5 0 1.4097+2 6.6454+0 1.3242+0 3.3706-1 2.8630-2 3.3618-3
1.2343 1 8.0760+0 1.2878+2 1.0189+1 1.5747+0 1.6065-1 4.0578-3
0.9719 2 2.0439+0 1.2940+1 1.2346+2 6.7315+0 3.6655-1 9.7742-3
0.7127 3 7.0938~1 2.7270+0 9.1789+0 1.1423+2 4.113040 2.9074-2
0.4569 4 9.3991-2 4.3399-1 7.7968-1 6.416040 1.1068+2 4.2033+0
0.2044 5 2.4673-2 2.4506-2 4.6478-2 1.0139-1 9.397040 1.0744+2
47
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TABLE 3 (continued)

E=1.6
0 1 2 3 4 5 6

Bine Vi

1.6 0 1.5422+2 1.1560+1 9.1727+0 3.5444+0 7.4985-1 8.9834-2 7.3633-4
1.3343 1 1.3862+1 1.3046+2 3,1070+1 1.2911+1 2.4085+0 1.7702-1 7.7638-4
1.0719 2 1.3692+1 3.8677+1 1.4200+2 1.9670+1 3.6074+0 2.8512-1 1.4919-3
0.8127 3 6.9779+0 2.1196+1 2.5942+1 1.1936+2 5.9894+0 2.5583-1 1.2566-3
0.5569 4 2.1543+0 5.7706+0 6.9431+0 8.7408+0 1.1221+2 4.6700+0 2.6314-2
0.3044 5 4.7222-1 7.7603-1 1.0040+0 6.8311-1 8.5445+0 1.0854+2 3.4371+0
0.0551 6 2.1363-2 1.8784-2 2.8998-2 1.8519-2 2.6573~-1 1.8970+1 9.7284+1

E=1.7
0 1 2 3 4 5 6

Einc Vi

1.7 0 2.1304+2 7.0688+0 4.6733+0 5.1492+0 2.4080+0 5.2821-1 1.6897-2
1.4343 1 8.3784+0 1.0262+2 8.4605+0 1.1116+1 3.7942+0 4.9302-1 1.0584-2
1.1719 2 6.7795+0 1.0355+1 1.0389+2 1.0876+1 4.2446+0 5.7969-1 1.2635-2
0.9127 3 9.5907+0 1.7468+1 1.3963+1 1.0722+2 4.6565+0 4.6085-1 1.0029-2
0.6569 4 6.2318+0 8.2842+0 7.5719+0 6.4700+0 1.1082+2 4.6090+0 4.2616-2
0.4044 5 2.2206+0 1.7486+0 1.6799+0 1.0402+0 7.4874+0 1.1083+2 4.8212+0
0.1551 6 1.8515-1 9.7848-2 9.5438-2 5.9000-2 1.8044-1 1.2566+1 1.0665+2

b aab

48




v g A

REPOappp—

:
g
.
X
3,
!
3
T
.
§
.
&
&
!
<

TABLE 3 (continued)

E=1.8
v 0 1 2 3 4 5 6
E, v, £
inc

1.8 0 1.8650+2 2.5811+1 6.5384-1 4.4459+0 4.4587+0 1.2601+0 6.6006-2
1.5343 1 3.0281+1 1.1941+2 1.6172+0 6.4523+0 4.6640+0 9.9387-1 4.3455-2
1.2719 2 9.2535-1 1.9509+0 9.6384+]1 6.2681+0 5.3864+0 1.1735+0 4.9053-2
1.0127 3 7.9021+0 9.7752+0 7.8720+0 1.0239+2 4.6700+0 9.4898-1 4.1611-2
0.7569 4 1.0603+1 9.4541+0 9.0510+0 6.2484+0 1.0984+2 4.6157+0 7.8369-2
0.5044 5 4.4971+4+0 3,0232+4+0 2.9591+0 1.9054+0 6.9267+0 1.1181+2 5.1326+0
0.2551 6 4.6566-1 2.6130-1 2.4452-1 1.6516~1 2.3248-1 1.0146+1 1.1167+2

E=1.9

v 0 1 2 3 4 S 6

E : 3
inc i
1.9 0 1.4935+2 2.7424+1 5.8317+0 2.1526+0 5.5000+0 1.7993+0 1.1589-~1
1.6343 1 3.1883+1 1.2310+2 7.8969+0 2.8738+0 6.1506+0 2.1334+0 1.4365~1
1.3719 2 8.0768+0 9.4075+0 1.0182+2 2.8372+0 6.4833+0 2.1861+0 1.3766-1
1.1127 3 3.6757+0 4.2209+0 3.4979+0 9.9145+1 4.8850+0 1.8021+0 1.2182-1
0.8569 4 1.2195+1 1.1730+1 1.0379+1 6.3434+0 1.0856+2 4.9184+40 1.7594-1
0.6044 5 5.6568+0 5.7691+0 4.9622+0 3.3180+0 6.9734+0 1.1183+2 5.0766+0
0.3551 6 6.2001~-1 6.6107-1 5.3175-1 3.8169-1 4.2451-1 8.6392+0 1.1411+2




TABLE 3 (continued)

E= 2,0
Ve 0 1 2 3 4 5 6

Binc Vi
2.0 0 1.7640+2 9.4743+0 9.7977+0 2.7138-1 3.6587+0 1.4649+0 1.0775-1
1.7343 1 1.0925+1 1.0417+2 1.7683+1 1.0019+0 5.7889+0 3.8371+0 3.7819-1
1.4719 2 1.3313+1 2.0836+1 1.0497+2 1.1963+0 4.4643+0 2.5640+0 2.3054-1
1.2127 3 4.4755-1 1.4327+0 1.4520+0 9.8163+1 4.5577+0 3.0818+0 3.0193-1
0.9569 4  7.6471+0 1.0491+1 6.8668+0 5.7762+0 1.0442+2 4.7769+0 3.3575-1
0.7044 5 4.1596+0 9.4475+0 5.3578+0 5.3061+0 6.4895+0 1.1014+2 4.7804+0
0.4551 6  4.7350-1 1.4410+0 7.4554-1 8.0449-1 7.0589-1 7.3981+0 1.1477+2

E=2.1

v 0 1 2 3 4 5 6
Einc b 5
24 0 1.5139+2 4.0867+0 6.4977+0 3.9027-1 1.4704+0 9.0861-1 8.7533-2
1.8343 1  4.6787+0 1.0440+2 1.7735+1 5.3208+0 3.4325+0 5.4904+0 7.7815-1
1.5719 2 8.6810+0 2.0696+1 1.0092+2 2.5036+0 2.1787+0 2.6797+0 3.4633-1
1.3127 3 6.2433-1 7.4347+0 2.9978+0 1.0114+2 3.5111+0 4.5865+0 6.4324-1
1.0569 4  2.9217+0 5.9572+0 3.2402+0 4.3610+0 1.0084+2 4.4257+0 4.7472-1
0.8044 5 2.372140 1.2520+1 5.2365+0 7.4852+0 5.8152+0 1.0938+2 4.6693+0
0.5551 6  3.3111-1 2.5711+0 9.8063-1 1.5210+0 9.0380-1 6.7656+0 1.1452+2
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TABLE 3 (continued)

E = 2,2

Einc

v
Vi

2.2

1.9343
1.6719
1.4127
1.1569
0.9044
0.6551

A U»n s W N+~ O

1.3077+2
8.1292+0
3.9352+0
2.1756+0
8.8406-1
1.6159+0
3.9228-1

7.1473+0
1.3758+2
1.2996+1
2.0553+1
2.1842+0
1.6153+1
4.4398+0

2.9905+0
1,.1233+1
9.6962+1
7.5393+0
1.5386+0
7.2062+0
1.8238+0

1.3971+0
1.5011+1
6.3707+0
1.0618+2
2.9108+0
9.5894+0
2.6143+0

4.6490-1
1.3064+0
1.0647+0
2.3837+0
9.8664+1
6.1354+0
1.4299+0

6.6429-1
7.5526+0
3.8981+0
6.1387+0
4.7961+0
1.0851+2
6.3936+0

1.1682-1
1.5037+0
7.1470-1
1.2124+0
8.0977-1
4.6316+0
1.1324+2

2.3

2.0343
1.7719
1.5127
1.2569
1.0044

0.7551

N U & W N ~ O

1.27°89+2
6.0782+0
1.5272+0
2.1973+0
3.3504-1
8.5953-1
4.0016-1

5.3760+0
1.3816+2
3.7922+0
2.0612+1
2.4883-1
1.1474+1
4.2037+0

1.1765+0

1.4452+0

1.8309-1

3.7534-1

3.303040 1.5328+1 1.5374-1 5.6651+0

9.1511+1
9.9749+0
3.1631-1
6.7385+0
2.2733+0

8.5161+0
1.0251+2
1.9247+0
6.2000+0
2.2722+0

2,.2438-1
1.5992+0
9.7174+1
5.8081+0
1.8356+0

3.8197+0
4.1164+0
4.6412+0
1.0443+2
5.3529+0

1.3138-1
1.5604+0
9.6885~-1
1.1343+0
1.1028+0
4.0246+0
1.1113+2




TABLE 3 (continued)

E=2.4
¥y > B 1 2 3 4 5 6
inc Vi
2.4 0 1.1430+2 2.5077+0 1.1451+0 9.6118-1 2.2752-1 2.3483-1 1.3479-1
2.143 1 2.8199+0 1.1565+2 2.7642+0 1.0369+1 3.6058-1 3.4639+0 1.3133+0
1.8719 2 1.4682+0 3.1517+0 8.9486+1 8.0899+0 1.9646-1 3.1328+0 1.0963+0
1.6127 3 1.4304+0 1.3722+1 9.3897+0 9.6831+1 1.5612+0 2.1676+0 8.3175-1
1.3569 4 4.0242-1 5.6715-1 2.7102-1 1.8555+0 9.6368+1 4.2747+0 1.3433+0
1.1044 5 5.1032-1 6.6943+0 5.3099+0 3.1654+0 5.2522+0 1.0131+2 3.5477+0
0.8551 6 3.7829-1 3.2779+0 2.3998+0 1.5686+0 2.1315+0 4.5817+0 1.0972+2
E = 2.5
0 1 2 3 4 S ©

E1‘.nc i :

2.5 0 1.0683+2 1.3472+40 1.4489+0 6.8334-1 3.1689-1 2.0667-1 1.6501-1
2.2343 1 1.5074+0 1.0143+2 5.0452+0 7.4373+0 9.4532-1 2.5663+0 1.345140
1.9719 2 1.8370+0 5.7166+0 9.0807+1 7.9369+0 8.0848-1 3.0112+0 1.4729+0
1.7127 3 9.9744-1 9.702140 9.1377+0 9.3670+1 1.7454+0 1.4579+0 7.8140-1
1.4569 4 5.4378-1 1.4497+0 1.094240 2.0519+40 9.6125+1 4.2542+0 1.8478+0
1.2044 5 4.2899-1 4.7609+0 4.930140 2.0733+0 5.1462+0 9.9448+1 3.3868+0
0.9551 6 4.3191-1 3.1465+0 3.0408+0 1.4011+0 2.8185+0 4.2706+0 1.0886+2
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TABLE 3 (continued)

E = 2.6

Einc

i

Ve 0

2.6

2.3343
2.0719
1.8127
1.5569
1.3044
1.0551

s W N~ O

1.0126+2
1.3127+0
2.2934+0
7.5745-1
7.4056-1
4.5061-1
5.7333-1

1.1785+0
9.5083+1
9.7063+0
7.3604+0
2.8102+0
4.0548+0
3.6814+0

1.8275+0
8.6151+0
9.5874+1
9.1892+0
3.1541+0
5.2645+0
4.5487+0

5.2810-1
5.7159+0
8.0399+0
9.1896+1
2.5940+0
1.9070+0
1.7841+0

4.4345-1
1.8743+0
2.3702+0
2.2279+0
9.6732+1
5.3589+0
4.1128+0

2.2606-1
2.2658+0
3.3143+0
1.3722+40
4.4897+0
9.8113+1
4.3904+0

2.3267-1
1.6640+0
2.3165+0
1.0384+0
2.7873+0
3.5515+0
1.0844+2

2.7
2.4343
2.1719
1.9127
1.6569
1.4044
1.1551

s W NN O~ O

N uv

9.7650+1
1.7935+0
2.5551+40
5.3471-1
9.4097-1
4.8271-1
7.5902-1

1.6170+0
9.6098+1
1.3781+1
5.1561+0
4.5808+0
3.5162+0
4.5028+0

2.0553+0
1.2295+1
1.0456+2
8.3462+0
7.0075+0
5.5279+0
6.9192+0

53

3.7880-1
4.0514+0
7.3504+0
9.0535+1
3.9426+0
2.1588+0
2.8812+0

5.7744-1
3.1179+0
5.3460+0
3.4152+0
9.8072+1
5.4478+0
5.7867+0

2,5107-1
2.0285+0
3.5744+0
1.5850+0
4.6175+0
0.6966+1
5.1012+0

3.2473-1
2.1367+0
3.6801+0
1.7400+0
4.0343+0
4.1959+0
1.0798+2
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TABLE 3 (continued)

2.8

2.5343
2.2719
2.0127
1.7569

w NN ~ O

1.5044 5

1.2551

9.5827+1
2.2689+0
2.0922+0
2.7451-1
9.2430-1
4.1012-1
7.9901-1

2.0536+0
1.0144+2
1.3886+1
2.7367+0
5.4832+0
2.4350+0
4.5648+0

1.6975+0
1.2448+1
1.0960+2
5.7841+0
1.0798+1
4.5059+0
8.5304+0

1.9733-1
2.1735+0
5.1243+0
8.8808+1
6.0520+0
2.1840+0
4.3555+0

5.7997-1
3.8013+0
8.3510+0
5.2827+0
9.8264+1
4.6940+0
6.4167+0

2.2034-1
1.4454+0
2.9837+0
1.6324+0
4.0193+0
9.5518+1
6.1207+0

3.5817-1
2,2608+0
4.7128+0
2.7161+0
4.5841+0
5.1066+0
1.0624+2

2.9

2.6343
2.3719
2.1127
1.8569
1.6044

1.3551

o U e w N +~# O

9.4341+1
2,1081+0
1.2223+0
1.0386-1
6.8056-1
2.5965-1
6.3734-1

1.9149+0
1.0299+2
9.8235+0
1.3215+0
4.7684+0
1.2598+0
3.6338+0

9.9976-1
8.8449+0
1.0524+2
3.6865+0
1.1611+1
2.6799+0
8.1119+0

7.5669-2
1.0599+0
3.2837+0
8.7209+1
7.8041+0
1.6912+0
5.3454+0

4.3577-1
3.3612+0
9.0909+0
6.8591+0
9.6321+1
3.4604+0
5.5523+0

1.4364-1
7.6730-1
1.8128+0
1.2842+0
2.9898+0
9.3712+1
6.6462+0

2.9782-1
1.8693+0
4.6347+0
3.4286+0
4.0520+0
5.6137+0
1.0357+2




TABLE 3 (continued)

E = 3.0
o # VE 0 1 2 3 4 5 6
inc i
3.0 0 9.2470+1 1.5191+0 5.1429-1 4.0487-2 2.9538-1 8.2667-2 2.2364-1
2.7343 1 1.666740 1.0028+42 5.4704+0 8.6636-1 2.6247+0 3.5738-1 1.4395+0
2.4719 2 6.2417-1 6.0512+0 9.8031+1 3.1743+0 8.4813+0 9.4693-1 4.1856+0
2.2127 3 5.4892-2 1.0705+0 3.5460+0 8.6743+]1 8.0148+0 8.6707-1 3.9761+0
1.9569 4 4.5283-1 3.6674+0 1.0713+]1 9.0625+0 9.4189+1 2,.2425+0 3.5218+0
1.7044 5 1.4550-1 5.7334-1 1.3733+0 1.1256+0 2.5747+0 9.2001+1 5.7923+0
1.4551 6 4.6108-1 2.7050+0 7.1101+0 6.0461+0 4.7362+0 6.7843+0 1.0160+2
E= 3.1
£ 0 1 2 3 4 5 6

Binc Vi

3.1 0 9.0509+1 1.1793+0 2.7773-1 4.8210-2 2.0472-1 4.7756-2 1.7158-1
2.8343 1 1.2899+0 9.6589+1 3.5476+0 1.0954+0 2.0627+0 1.6584-1 1.1631+0
2.5719 2 3.3474-1 3.9096+0 9.2630+1 4.3610+0 7.7785+0 4.8484-1 3.9205+0
2.3127 3 6.4621-2 1.342440 4.849740 B8.7819+1 9.1885+0 5.6159-1 4.6939+0
2.0569 4 3.0854-1 2.8423+0 9.7259+0 1.0331+1 9.2968+1 1.8170+0 3.5739+0
1.8044 5 8.2047-2 2.6051-1 6.9107-1 7.1981-1 2.0714+0 9.0528+1 5.9909+0
1.5551 6 3.4202-1 2.1198+0 6.4836+0 6.9806+0 4.7271+0 6.9511+0 1.0074+2

e
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TABLE 3 (continued)

E = 3.2
B, vy Ve 0 1 2 3 4 5 6
3.2 0 8.8675+1 9.4705-1 1.8285-1 7.2120-2 1.4702-1 2.9289-2 1.3636-1
2.9343 1 1.0328+0 9.3330+1 2.7323+0 1.4614+0 1.6588+0 8.5732-2 9.9618-1
2.6719 2 2.1900-1 3.0007+0 8.9870+1 6.3574+0 7.1641+0 2.7769-1 3.8553+0
2.4127 3 9.5652-2 1.7773+0 7.0402+0 9.0720+1 1.0436+1 3.9533-1 5.6854+0
2.1569 4 2.1813-1 2.2567+0 8.8745+0 1.1674+1 9.2702+1 1.5775+0 4.3133+0
1.9044 5 4.9216-2 1.3209-1 3.8960-1 5.0087-1 1.7867+0 8.9267+1 6.3267+0
1.6551 6 2.6363-1 1.7660+0 6.2235+0 8.2878+0 5.6209+0 7.2793+0 1.0079+2

E= 3.3
5 X 0 1 2 3 4 5 6
inc b &
33 0 8.7032+1 8.0382-1 1.5969-1 9.8273-2 1.0448-1 2.0507-2 1.0738-1
3.0343 1 8.7422-1 9.0897+1 2.6248+0 1.7867+0 1.3067+0 6.3004-2 8.6251-1
2.7719 2 1.9011-1 2.8733+0 8.9716+1 8.5985+0 6.3646+0 2.3719-1 3,.8013+0
2.5127 3 1.2906-1 2.1576+0 9.4852+0 9.5240+1 1.1291+1 4.0527-1 6.7544+0
2.2569 4 1.5276-1 1.7568+0 7.8168+0 1.2571+1 9.2981+1 1.4821+0 5.6761+0
2.0044 5 3.3763-2 9.5377-2 3.2801-1 5.0806-1 1.6688+0 8.8201+1 6.7466+0
1.7551 6 2.0191-1 1.4911+40 6.0033+0 9.6699+0 7.2987+0 7.704740 1.0130+2




TABLE 3 (continued)

E= 3.4

Eine Vi - g g . ¢ 5 6

3.4 0 8.5585+1 7.2260-1 1.6325-1 1.1312-1 6.8775-2 1.7702-2 7.8592-2
3.1343 1 7.8386-1 8.9307+1 2.8364+0 1.8840+0 9.4572-1 6.9914-2 7.0621-1
2.8719 2 1.9328-1 3.0956+0 9.1384+1 1.0084+1 5.1298+0 3.0866-1 3.5189+0
2.6127 3 1.4721-1 2.2601+0 1.1084+1 9.9711+1 1.0986+1 6.2711-1 7.3887+0
2.3569 4 9.9212-2 1.2576+0 6.2506+0 1.2178+1 9.2924+1 1.5841+0 7.2540+0
2.1044 5 2.8601-2 1.0413-1 4.2124-1 7.7860-1 1.7742+0 8.7326+1 7.1088+0
1.8551 6 1.4403-1 1.1931+0 5.4475+0 1.0406+1 9.2160+0 8.0639+0 1.0137+2

E= 3.5

& . Ve 0 1 2 3 4 5 6

inc i

3.5 0 8.4306+1 6.7197-1 1.6162-1 1.0874-1 4.0448-2 1.7723-2 5.1584-2
3.2343 1 7.2718-1 8.8232+1 2.9686+0 1.6806+0 6.0766-1 8.4268-2 5.2672-1
2.9719 2 1.9034-1 3.2307+0 9.3074+1 1.0018+1 3.6345+0 4.1957-1 2.9482+0
2.7127 3 1.4030-1 2.0038+0 1.0975+1 1.0168+2 9.3528+0 1.0010+0 7.1936+0
2.4569 4 5.7620-2 7.9993-1 4.3963+0 1.0326+1 9.1745+1 1.9374+0 8.3927+0
2.2044 5 2.8140-2 1.2364-1 5.6565-1 1.2318+0 2.1593+0 8.6639+1 7.3573+0
1.9551 6 9.2344-2 8.7132-1 4.4814+0 9.9810+0 1.0546+1 8.2951+0 1.0028+2
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TABLE 3 (continued)

3.6 0
3.3343 1
3.0719 2
2.8127 3
2.5569 4
2.3044 5
2.0551 6

8.3147+1
6.7787-1
1.7034-1
1.1667-1
3.0683-2
2.8199-2
5.4392-2

6.2784-1 1.4535-1 9.1159-2 2.1793-2 1.8050-2 3.1051-2

8.7241+]1 2.8515+0 1.3159+0 3.5637-1 9.2263-2 3.6552-1

3.0951+0 9.3416+1 8.7312+0 2.3341+0 5.0633-1 2.2848+0

1.5600+0 9.5356+0 1.0056+2 7.2032+0 1.3970+0 6.3861+0

4.6472-1 2.8042+0 7.9239+0 8.9620+1 2.5087+0 8.8397+0

1.3349-1 6.7497-1 1.7052+0 2.7836+0 8.6152+1 7.6367+0

5.9302-1 3.4151+0 8.7402+0 1.0997+1 8.5629+0 9.8321+1

3.7 0
3.4343 1
3.1719 2
2,9127 3
2.6569 4
2.4044 5
2.1551 6

8.2075+1
6.2874-1
1.4214-1
9.0413-2
1.5892-2
2.7347-2
3.0912-2

5.8359-1 1.2185-1 7.1175-2
8.6151+1 2.5717+40 9.6284-1
2.7844+0 9.2464+1 7.1013+0
1.1352+0 7.7330+0 9.7697+1
2.6269-1 1.7352+0 5.8834+0
1.3200-1 7.3082-1 2.1121+0
3.9509-1 2.5333+0 7.3583+0

1.1411-2
2.0323-1
1.4535+0
5.3666+0
8.7295+1
3.5821+0
1.0918+1

1.7771-2 1.8005-2
9.2420-2 2.4793-1
5.5399-1 1.7212+0
1.7435+0 5.4444+0
3.2416+0 8.8569+0
8.5940+1 8.1396+0
9.0809+0 9.6324+1




TABLE 3 (continued)

E = 3.8
& : Ve 0 10 2 3 4 5 6
i ine "1
3.8 0 8.1074+1 5.4113-1 9.8992-2 5.4458-2 6.1523-3 1.7001-2 1.0415-2
3.5343 1 5.8181-1 8.4991+1 2.2544+0 6.9176-1 1.2018-1 8.8255-2 1.7053-1
3.2719 2 1.1497-1 2.4352+0 9.0852+1 5.6620+0 9.4098-1 5.7553-1 1.3082+0
3.0127 3 6.8689-2 8.1151-1 6.1490+0 9.4439+1 4.1180+0 2.0421+0 4.6341+0
2.7569 4 8.4801-3 1.5407-1 1.1167+0 4.5001+0 8.5309+1 4.1211+0 8.7535+0
2.5044 5 2.5796-2 1.2454-1 7.5190-1 2.4567+0 4.5367+0 8.6120+1 8.9651+0
2.2551 6 1.7551-2 2.6725-1 1.8979+0 6.1909+0 1.0701+1 9.9559+0 9.4864+1
E = 3.9
& g O 1 2 3 4 5 6
inc i
3.9 0 8.0136+1 5.0265-1 7.9899-2 4.1998-2 3.5920-3 1.6003-2 6.0731-3
3.6343 1 5.3940-1 8.3829+1 1.9644+0 5.0244-1 7.8095-2 8.2393-2 1.2058-1
3.3719 2 9.2414-2 2.1173+0 8.9062+1 4.5543+0 6.7337-1 5.8329-1 1.0173+0
3.1127 3 5.2620-2 5.8663-1 4.9334+0 9.1462+1 3.4098+0 2.3104+0 4.0000+0
2.8569 4 4.9035-3 9.9345-2 7.9475-1 3.7152+0 8.3900+1 5.1564+0 8.6667+0
2.6044 5 2.3965-2 1.1497-1 7.5518-1 2.7614+0 5.6564+0 8.6824+1 1.0123+1
2.3551 6 1.0056-2 1.8608-1 1.4565+0 5.2866+0 1.0513+1 1.1194+1 9.4181+1
59




TABLE 3 (continued)

E= 4.0

Einc kol

Vf 0

4.0
3.7343

N O~ O

3.4719
3.2127
2.9569
2.7044

S U e w

2.4551

7.9256+1
5.0224-1
7.4771-2
4.1197-2
3.2078-3
2.2057-2
5.7723-3

4.6888-1
8.2709+1
1.8511+0
4.3598-1
7.3477-2
1.0455-1
1.3290-1

6.4898-2
1.7210+0
8.7330+1
4.0565+0
6.5023-1
7.4599-1
1.1412+0

3.3089-2
3.7509-1
3.7537+0
8.8995+1
3.3951+0
3.0264+0
4.5732+0

2.3713-3
5.8181-2
5.5379-1
3.1248+0
8.3174+1
6.9239+0
1.0341+1

1.4912-2
7.5716-2
5.8108-1
2.5475+0
6.3326+0
8.8154+1
1.2716+1

3.5430-3
8.7383-2
8.0706-1
3.4948+0
8.5867+0
1.1544+1

9.4344+1

E, .
inc Vi

4.2
3.9343
3.6719

wWw N ~ O

3.4127
3.1569 4
2.9044 5
2.6551 6

7.7650+1
4.4229-1
5.0972-2
2.7555-2
2.0177-3
1.8053-2
1.8398-3

4.1431-1
8.0662+1
1.4638+0
2.7157-1
5.7944-2

8.0073-2

6.8903-2

4.4562-2
1.3662+0
8.4357+1
3.0420+0
6.0660-1
6.7164-1
7.0201-1

2.2390-2
2.3557-1
2.8273+0
8.5714+1
3.6336+0
3.2819+0
3.3615+0

1.5166-3
4.6494-2
5.2153-1
3.3612+0
8.3802+1
9.4049+0
9.5349+0

1.2484-2
5.9112-2
5.3126-1
2.7930+0
8.6526+0

9.2370+1
1.5645+1

1.1631-3
4.6501-2
5.0763-1
2.6153+0
8.0194+0

1.4302+1
9.6730+1
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TABLE 3 (continued)

E = 4.4

e 0 1 2 3 q 5 6
Einc i
4.4 0 7.6220+1 3.7325-1 3.2534-2 1.6967-2 1.1798-3 9.8071-3 5.0587-4
4.1343 1 3.9724-1 7.8880+1 1.1384+0 1.7197-1 4.1614-2 3.8359-2 2.2586-2
3.8719 2 3.6971-2 1.2155+0 8.2072+1 2.4023+0 5.1992-1 4.0147-1 2.8487-1
3.6127 3 2.0664-2 1.9680-1 2.5746+0 8.4080+1 3.8031+0 2.4733+C 1.7098+0
3.3569 4 1.5464-3 5.1250-2 5.9967~1 4.0930+0 8.5750+1 9.5156+0 6.3333+0
3.1044 5 1.3900-2 5.1085-2 5.0072~1 2.8783+0 1.0289+1 9.5810+1 1.4785+1
2.8551 6 7.7959-4 3.2705-2 3.8632~1 2.1635+0 7.4463+0 1.6076+1 9.9030+1

E = 4.6

Vf 0 1 < 3 4 5 6
Eine Vi
4.6 0 7.4935+1 3.4156-1 2.4933-2 1.3760-2 8.4277~4 7.5744-3 5.2530-4
4.3343 1 3.6250-1 7.7318+1 9.8056-1 1.3248-1 3.2287~-2 2.0720-2 9.9011-3
4.0719 2 2.8167-2 1.0437+0 8.0214+1 2.1102+0 4.3682~1 2.5017-1 1.3892-1
3.8127 3 1.6601-2 1.5060-1 2.2536+0 8.2807+1 3.7164+0 1.7733+0 9.5517-1
3.5569 4 1.0899-3 3.9344-2 5.0006-1 3.9837+0 8.6306+1 8.4030+0 4.1665+0
3.3044 S5 1.0544-2 2,7178-2 3.0828-1 2.0461+0 9.0452+0 9.5352+1 1.2506+1
3.0551 6 7.9092-4 1.4046-2 1.8515-1 1.1920+0 4.8508+0 1.3526+1 9.8103+1
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TABLE 3 (continued)

E = 4.8
: B, . v, Ve 0 1 2 3 4 5 6
4.8 0 7.3773+1 3.1626-1 1.9720-2 1.1498-2 5.6285-4 6.1594-3 6.5549-4
4.5343 1  3.3479-1i 7.5928+1 8.6005-1 1.0187-1 2.2538-2 1.0454-2 4.4336-3
4.2719 2 2.2159-2 9.1288-1 7.8563+1 1.8339+0 3.2557-1 1.4324-1 6.4672-2
4.0127 3 1.3754-2 1.1511-1 1.9523+0 8.1278+1 3.2488+0 1.1509+0 5.0211-1
3.7569 4  7.1912-4 2.7202-2 3.7020-1 3.4700+0 8.5076+1 6.6442+0 2.5287+0
3.5044 5 8.4366-3 1.3526-2 1.7461-1 1.3178+0 7.122940 9.2251+1 9.5811+0
3.2551 6 9.6659-4 6.1759-3 8.4871-2 6.1897-1 2.9184+0 1.0314+1 9.4857+1
= 5.0
;_ oy 0 1 2 3 4 5 6
inc 1
5.0 0 7.2714+1 2.9558-1 1.5981-2 9.8172-3 3.8104-4 5.3280-3 7.3481-4
4.7343 1  3.1217-1 7.4674+1 7.6480-1 7.8626-2 1.5386-2 5.4520-3 2.2842-3
4.4719 2 1.7868-2 8.0969-1 7.7061+1 1.5894+0 2.3489-1 8.2557-2 3.1218-2
4.2127 3 1.1651-2 8.8361-2 1.6871+0 7.9626+1 2.7403+0 7.4267-1 2.7015-1
3.9569 4  4.8149-4 1.8409-2 2.6546-1 2.9175+0 8.3117+1 5.1580+0 1.5463+0
3.7044 5 7.1915-3 6.9679-3 9.9661-2 8.4459-1 5.5097+0 8.8679+1 7.2640+0
3.4551 6 1.0633-3 3.1298-3 4.0404-2 3.2938-1 1.7709+0 7.7879+0 9.1206+1
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TABLE 3 (continued)

E= 5.4
Ve 0 1 2 3 4 5 6

E, v,

inc 1

5.4 0 7.0856+1 2.6390-1 1.1163-2 7.5994-3 2.0798-4 4.4470-3 7.6829-4
5.1343 1 2.7756-1 7.2501+1 6.2734-1 4.9229-2 7.7130-3 1.9289-3 1.0487-3
4.8719 2 1.2373-2 6.6113-1 7.4463+1 1.2285+0 1.2803-1 3.1506-2 8.9752-3
4.6127 3 8.8964-3 5.4795-2 1.2976+0 7.6570+1 1.9890+0 3.4474-1 9.2836-2
4.3569 4 2.5777-4 9.0892-3 1.4316-1 2.1057+0 7.9250+1 3.3312+0 6.6257-1
4.1044 5 5.8509-3 2.4130-3 3.7398-2 3.8744-1 3.5361+0 8.2823+1 4.5437+0
3.8551 6 1.0761-3 1.3967-3 1.1342-2 1.1108-1 7.4880-1 4.8374+0 8.5154+1

E= 5.8
bt S 1 2 3 4 5 6

E, 80 Ny

inc 1

5.8 0 6.9274+1 2.4072-1 8.3403-3 6.2721-3 1.4371-4 3.9565-3 7.4311-4
5.5343 1 2.5228-1 7.0678+1 5.3558-1 3.3284-2 4.4284-3 1.0083-3 7.8140-4
5.2719 2 9.1759-3 5.6224-1 7.2321+1 9.9736-1 7.7413-2 1.4543-2 3.3935-3
5.0127 3 7.2572-3 3.6748-2 1.0489+0 7.4043+1 1.540140 1.8741-1 3.9629-2
4.7569 4 1.7522-4 5.1521-3 8.5793-2 1.6229+0 7.6137+1 2.3970+0 3.4073-1
4.5044 5 5.0945-3 1.2388-3 1.7021-2 2.0856-1 2.531440 7.8695+1 3.2045+0
4.2551 6 1.0129-3 1.0162-3 4.2043-3 4.6685-2 3.8091-1 3.392240 8.0804+1
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TABLE 3 (continued)

E =6.2
& S Ve 0 1 2 3 4 5 6
inc 3
6.2 0 6.7908+1 2.2286-1 6.5626-3 5.4104~-3 1.1613-4 3.6154-3 7.0774-4
5.9343 1 2.3284-1 6.9125+1 4.7106-1 2.4020-2 2.8583-3 7.1006-4 6.9466-4
5.6719 2 7.1737-3 4.9285-1 7.0526+1 8.4334-1 5.1213-2 7.7832-3 1.6140-3
5.4127 3 6.1974-3 2.6334-2 8.8372-1 7.,1964+1 1.2603+0 1.1511-1 1.9906~2
5.1569 4 1.3962-4 3.2891-3 5.6327-2 1,3228+0 7.3662+1 1.8681+0 2.0122~1
4.9044 5 4.5705-3 8.5917~4 9.0012-3 1.,2705-1 1.9643+0 7.5637+1 2.4628+0
4.6551 6 9.4262-4 8.8554-4 1.9665-3 2.,3145-2 2,2290-1 2.5946+0 7.7545+1
E = 6.6

- 3 Ve 0 1 2 3 4 5 6

inc i

6.6 0 6.6713+1 2.0848-1 5.3750-3 4.8088-3 1.0231-4 3.3520-3 6.7371-4
6.3343 1 2.1723-1 6.7780+1 4.2344-1 1.8253-2 2.0208~3 5.9232-4 6.5183-4
6.0719 2 5.8425-3 4.4174-1 6.8999+1 7.3538-1 3.6330~2 4.6545-3 9.2886-4
5.8127 3  5.4600-3 1.9891-2 7.6816-1 7.0224+1 1.0742+0 7.7362-2 1.1265-2
5.5569 4 1.2151-4 2.3035-3 3.9697-2 1.1237+0 7.1644+1 1.5387+0 1.3149-1
5.3044 5 4.1708-3 7.0733-4 5.3280-3 8.4776-2 1.6119+0 7.3243+1 2.0072+0
5.0551 6 8.7960-4 8.1677-4 1.1156~3 1.2953-2 1.4454-1 2.1061+0 7.4979+1

b g e

P




g TABLE 3 (continued)

e

65

E=7.0
5 Tl 0 1 2 3 4 5 6
inc i
7.0 0 6.5651+1 1.9640-1 4.5408-3 4.3627-3 9.4278-5 3.1371-3 6.4331-4
6.7343 1 2.0415-1 6.6600+1 3.8650-1 1.4449-2 1.5319-3 5.3648-4 6.2252-4
6.4719 2 4.9114-3 4.0217-1 6.7677+1 6.5562~1 2.7206-2 3.0320-3 6.2374-4
6.2127 3 4.9156-3 1.5662-2 6.8296-1 6.8743+1 9.4273-1 5.5623-2 6.9753-3
5.9569 4 1.1078-4 1.7318-3 2.9558-2 9.8322-1 6.9958+1 1.3174+0 9.2704-2
5.7044 S 3.8496-3 6.3334-4 3.4399-3 6.0580-2 1.375740 7.1294+1 1.7049+0
5.4551 6 8.2549~-4 7.6849-4 7.4000-4 7.9440-3 1.0123-1 1.7828+0 7.2887+1
E = 7.4

B o 0 1 2 3 4 5 6
inc 1

7.4 0 6.4695+1 1.8605-1 3.9301-3 4.0159-3 8.8932-5 2.9557-3 6.1652-4
7.1343 1 1.9298-1 6.5549+1 3.5687-1 1.1819-2 1.2246-3 5.0495-4 5.9843-4
6.8719 2 4.2321-3 3.7049-1 6.6515+1 5.9423-1 2.1262-2 2.1131-3 4.7116-4
6.6127 3 4.4941-3 1.2751-2 6.1751-1 6.7460+1 8.4503-1 4.2135-2 4.6326-3
6.3569 4 1.0352-4 1.3744-3 2.2984-2 8.7903-1 6.8521+1 1.1597+0 6.9301-2
6.1044 5  3.5830-3 5.9015-4 2.3788-3 4.5643-2 1.207740 6.9666+1 1.4923+0
5.8551 6 7.7918-4 7.2917-4 5.5297-4 5.,2321-3 7.5240-2 1.5558+0 7.1138+)




Y P Y PSP,

TABLE 3 (continued)

E = 8.0
¥ Ve 0 1 2 3 4 5 6
incC
8.0 6.3417+1 1.7302-1 3,2745-3 3.6145-3 8.3248-5 2.7281-3 5.8191-4
7.7343 1.7897~1 6.4158+1 3.2173-1 9.1688-3 9.4096-4 4.7584-4 5.6677-4
7.4719 3.5060~3 3.3303-1 6.4999+1 5.2414-1 1.5619-2 1.3570-3 3.5897-4
7.2127 4.0091-3 9.8318-3 5,4297-1 6.5811+1 7.3685-1 2.9910-2 2.7764-3
6.9569 9.5730~5 1.0461-3 1.6775-2 7.6395-1 6.6708+1 9.9215-1 4.8664-2
6.7044 3.2553-3 5.4894-4 1.5124-3 3.2178-2 1.0295+0 6.7650+1 1.2698+0
6.4551 7.2117-4 6.7908-4 4.1550-4 3.1023-3 5.2447-2 1.3188+0 6.8980+1
E=29.0
b 0 1 2 3 4 5 6

inc

9.0 6.1578+1 1.5652-1 2.5783-3 3.1318-3 7.6321-5 2.4290-3 5.3490-4
8.7343 1.6128-1 6.2191+1 2.8023-1 6.5878-3 6.8566-4 4.4499-4 5.2015-4
8.4719 2.7390-3 2.8891-1 6.2893+1 4.4422-1 1.0513-2 7.8374-4 2.8222-4
8.2127 3.4320-3 7.0061-3 4.5824~1 6.3567+1 6.1649-1 1.9413-2 1.4418-3
7.9569 8.6326-5 7.5265-4 1.1193~2 6.3631-1 6.4292+1 8.1270-1 3.,1497-2
7.7044 2.8375-3 5.0448-4 8.6181~4 2.0694-2 8.3934-1 6.5029+1 1.0344+0
7.4551 6.4575-4 6.0940-4 3.2071~4 1.5883-3 3.3617-2 1.0690+0 6.6201+1

b b
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TABLE 3 (continued)

E = 10.0
v 0 1 2 3 4 5 6

Einc Vi :

10.0 0 5.9961+1 1.4446-1 2.1478-3 2.7787-3 7.0559-5 2.1955-3 4.9674-4
9.7343 1 1.4841-1 6.0496+1 2.5262-1 5.1361-3 5.4377-4 4.2293-4 4.7891-4
9.4719 2 2.2675-3 2.5961-1 6.1116+1 3.9281-1 7.8486-3 5.2930-4 2.4935-4
9.2127 3  3.0161-3 5.4268-3 4.0386~1 6.1712+1 5.4014-1 1.4179-2 8.9032-4
8.9569 4 7.8776-5 5.9097-4 8.2998-3 5.5557-1 6.2338+1 7.0152-1 2.3178-2
8.7044 5 2,5223-3 4.7297-4 5.7597-4 1.5007-2 7.2187-1 6.2959+1 8.8827-1
8.4551 6 5.8750-4 5.5137-4 2.7933-4 9.7009-4 2.4553-2 9.1445-1 6.4042+1
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The vibrational excitation cross sections o for

v=1,2,3,4,5 are shown in Figure 7. The substruc2;:es appear
in those cross sections, but they are less pronounced than
those found in e-N, scattering (Ref. 22). The 0+l transition
cross section gives the dominant contribution to the cross
sections and the cross section, in general, decrease as

Av=vf-vi increases.

In Figure 8, the vibrational excitation cross sections
from the initially first excited state Oy with v=2,3,4,5
are shown. Again, 1+2 transition cross section is the larg-
est one among these cross sections and the trend of the con-
tribution in terms of Av is similar to the 0+v case. How-
ever, the energy separations between the resonance peaks be-
come larger and the energy regions, for which the excitation
cross sections is appreciable, is widened compared with those
of 0+v excitation. 1In Figure 9, where the excitation cross
24y with v=3,4,5
are shown, these features are more enhanced and the cross

section from initially second excited state ¢

sections as functions of the incident energy become smoother
except the first peak in 2+3 transition. The cross section
O3,y with v=4,5 are shown in Figure 10. All peaks in that
figure are very broad.

The possible explanation for the above broadened resonance
peak when the initial vibrational states are in the excited
states can be understood by the fact that the overlap between
initially excited state and compound state of CO becomes larger
than that for the initially ground state. Thus the escape
probability from the compound state or the width of the reson-
ance become bigger.

Sharp resonances for the elastic scattering appear only
in the ground vibrational state. For the first excited state,
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the broad substructures are present but there is no sign of
the resonance of the elastic scattering in the second excited
state. (See Figure 11).

Comparison between the experimental measurements and
the results of the present calculation are made in Figures
12-15 for the vibrational excitation cross sections O0av
with v=1,2,3,4, respectively. The experimental data were
taken from the work of Ehrhardt, Laughans, Linder and Taylor
(Ref. 40). The present results somewhat overestimate the
experimental measurements. However, the theoretical ratios
between the excitation cross sections are consistent with
those of experiment. Furthermore, the present theory accounts
for all major features in the substructures of these cross

sections.

After we finished a preliminary draft of the pres :nt
report, Phillips, Michejda and Wong (Ref.4l) reported experi-
mental measurement for 1-2 vibrational excitation cross sec-
tions. They observed a single strong peak at 1.4 eV and the
bell-shaped profile centered near 2.2 eV. The maximum cross
section at 1.4 eV is comparable to the laracest peak of 0+1 vi-
brational excitation cross section. Our calculation predicted
the above strong resonance peak at 1.4 eV (See Figure 8). Un-
fortunately, more details of their experimental results are
not yet published.

The differential cross sections for the vibrational ex-
citation obtained from present calculation are shown in Figures
16-20, where they are compared with the experimental data.
These data are again from Ref. 40, but they are not absolutely
calibrated, in contrast to the above integral cross sections.
The shapes of the differential cross sections, obtained from
present theory, are similar to each other around the resonance
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energy, nearly symmetric around 90 and shallow dips at
around 60° and 120°. For e—N2 scattering, the above dips
were found to be much deeper than those of present e-CO scat-
tering (Ref. 22). This indicates that the e-N2 resonance
arises from dr-wave, while the e-CO resonance comes from both
pr- and dv- waves. The shapes of the experimental differen-
tial cross section are also similar to each other around the
resonance region and the agreement between the experiment

and theory are reasonably good. The vibrationally elastic
momentum transfer cross sections are also shown in Figure 21
where they are compared with experimental data. These experi-
mental data are the results of Hake and Phelps (Ref. 42) in-
ferred from the swarm experiments. The experimental curve
above 1.0 eV was obtained so that it extrapolates smoothly

to the derived results below 1.0 eV.

The results of the present calculation again overestimate
the vibrationally elastic momentum transfer cross section,
although the energy dependences of experimental and theoretical
cross sections are similar to each other. This discrepancy
mainly originates from the non-resonant background waves.

As mentioned earlier, the main emphasis of the present
e-CO project is the calculation of the vibrational transitions.
Therefore, we were less concerned with the convergence on
the partial waves which are important in the elastic scattering,
in order to keep the computational efforts within manageable
level. Furthermore, the present ab initio dipole moment is
about 2.4 times bigger than the experimental one. This will
partly cause the above overestimation of the elastic scat-
tering, in particular, in the low energy region below 1.0 eV.
In our point of view, the normalization procedure of the
potential Vl(Stat)(r,R), which contains the dipole potential
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in the long range region, is not quite clear. Although

V{Stat)(r,R) is 2.4 times bigger than the experimental one

in the outside region, this ratio is not certain in the in-

side region within the electronic clouds of target, contrary

to the work of Ref. 43. For this reason, we did not modify

the potential V{Stat)(r,R) obtained from ab initio molecular
orbital wave function. An appropriate modification of this
potential might reduce the elastic momentum transfer cross sec-
tions below 1.0 eV. !

In Figures 22 and 23, the present differential cross
sections for the elastic scattering are compared with those of
experiment, taken again from Ref. 40. The experimental data
were not absolutely calibrated. The agreement between theory
and experiments for the shape of the angular dependence of the
elastic cross sections are reasonably good.

In recent work by Tanaka, Srivastava and Chutjan (Ref.
44), they measured the vibrationally elastic absolute dif-
ferential cross sections. 1In Figures 24-25, the present re-
sults are compared with their data. (Notice the small dif-
ference between two experimental data from Ref. 35 and 38 in
the shape of forward angles. See Figures 23 and 24). 1In
general, the present results and those of experiments are fairly
good in both absolute magnitude and shapes of the differential
cross sections.
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SECTION VI
DISCUSSIONS AND CONCLUSION

We have computed the vibrational transition cross sec-
tions of e-CO scattering in the energy range of 0 ~ 10 eV.
The hybrid theory, which is an ab initio approach but tract-
able for the calculation of the vibrational transition cross
section, yields reasonably good results when the accurate
interaction potentials obtained from molecular orbital wave
functions are used. Furthermore, this theory is capable of
predicting experimental measurements as demonstrated in the 1+2
vibrational excitation.

In electron-molecule scattering, the rotational motion
of target molecule is much slower than the translational motion
of incident electron. Therefore, the rotational motion was
treated with adiabatic approximation in hybrid theory. In
other words, rotational wave functions were not included in
the close-coupling calculation and the transition matrix ele-
ments were evaluated at each instantaneous direction of the
internuclear axis of target. The present results showed that
the rotational motion of target molecule is indeed adiabatic
and is not quite sO important when studying the vibrational
transition cross section in which the final rotational ssates
are summed and the initial rotational states are averaged.
However, it should be noted that the adiabatic condition for
rotational motion cannot be satisfied in the very low energy
region such as 0 ~ 1/10000 eV.

Based on the present results, a general trend may be
found for those transition cross sections connected to higher
vibrational states which were not included in the calculation.
For the vibrational transition with large change of vibrational
guantum numbers such that Av > 7, the corresponding cross
sections will be small, at most order of 0.1 a.u.(aoz)
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for excitation. There will be no sharp substiuctures of those
cross sections in the present energy region. The transition
cross sections between the higher vibrational states with
Av=1,2,3 must be appreciable throughout the whole energy
range including threshold region. Those cross sections with
Av=1 may be on the order of 5 a.u. The cross section will
decrease as Av increases. The elastic scattering cross sec-
tion (Av=0) for higher vibrational state, will be basically
given by the background of the above cross section for the
ground vibrational state. However, it is generally difficult
to obtain rigorous and quantitative predictions due to the
irregularity of the energy dependence of transition cross sec-
tions.

We have computed the rate coefficients of elastic scatter-
ing ard vibrational excitations. These are given by

= <Yy
k e O

Vi "Vf Vi "Vf 5

Aok 2 ] -E;/kT
= (ﬁ) ——TE i Eiovi-'vf(Ei)e dE

for efzei.

Here, m is the mass of electron and Yo is the incident velo-
city. The E and T are the incident energy (Einc) and absolute
temperature, respectively. The e, g are the initial and final
’

vibrational energy levels. The rate coefficients of vibra-
tional deexcitation may be obtained from
€¢-€

g -3

kT

ka*Vi = kVi*Vf X e

This equation is derived from the following relations of de-
tailed balance and the energy conservations:
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Vi{*Ve
E = Ei i e Eg + €¢

The Ef is the scattered energy.

In TABLE 4, the rate coefficients thus computed are tabulated
for kT = 0.5, 1.0 and 1.5 eV. The entries of that table are in
units of cm3/sec. The numbers a-n in the table should read as
ax10™™. since energies for which the cross sections were calcu-
lated in the present report are not dense enough to perform
accurate integration over energy, we made linear interpolation
for the cross sections from available ones. Therefore, the
entries in the table are approximate values. Yet, the general
trend of the vibrational transitions can be more easily found
from the above rate coefficients. It is seen that the rates of
excitation monotonically decrease as Av increases. As the
temperature increases, the rate coefficients again monotonically
increase. But there is a tendency of saturation in high tempera-
ture region.

Although the hybrid theory seems to be best suited for
the present purpose, it also has some weaknesses as most of
other ab initio approaches do. For example, it is difficult
to achieve the complete convergence on both partial waves and
vibrational states with the size of core memory of the present

day computer. If the number of partial waves included is suf-
ficiently large to guarantee the convergence, then only a few vi-
brational states can be coupled in the calculation. A similar re-

mark also applies to the numpber of vibrational states included. For

this reason, we invested a considerable effort to determine the

optimal values of Vaas

earlier, we were less concerned with the convergence on partial

and xmax (see Eq. (70)). As mentioned




TABLE 4

THE RATE COEFFICIENTS OF ELASTIC SCATTERING AND
VIBRATIONAL TRANSITIONS FOR ELECTRON-CARBON MONOXIDE

s A T i LAY A U T A 1y

A £ 0 1 2 3 4 5
T kT=0.5
0 1.4729-7 3.4234-9 1.0951-9 5.3365-10 4.6469-10 1.6074-10
1 1.4287-7 5.9041-9 2.7611-9 1.1259-9 8.0967-10
2 1.3942-7 5.9926-9 2.0535-9 9.7961-10
3 1.3759-7 4.7254-9 1.4264-9
4 1.3576-7 4.9933-9
5 1.3666-7
kT=1.0
0 2.1161-7 6.9466-9 2.6392-9 1.2853-9 1.1265-9 4.2100-10
1 1.9416-6 1.0571-8 5.8508-9 2.4898-9 2.0086-9
2 1.8475-7 9.6855-9 4.5533-9 2.1197-9
3 1.7998-7 7.9249-9 2.7236-9
4 1.7694-7 7.5651-9
5 1.7696-7
kT=1.5
2.3314-7 7.1663-9 2.8070-9 1.3205-9 1.1870-9 4.5676-10
2.1376-7 1.0901-8 6.0707-9 2.6407-9 2.1343-9
2.0322-7 1.0319-8 5.0428-9 2.2279-9
1.9763-7 8.9206-9 3.0076-9
1.9312-7 8.7260-9
1.9260-7
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waves. Therefore, the present results for the elastic scatter-
ing cross sections could be less accurate than those of vibra-
tional transition cross sections. For the latter cross sections
presented in this report, a reasonable, although not complete,
convergence seems to be achieved except for those transitions
connected to the highest vibrational states. This arises from
the inevitable "boundary effect" for any close-coupling approxi-
mation. 1In general, the transition cross sections with large

Av = lvi-vfl, for example, Av = v . -1, Vnax~2¢ are somewhat
sensitive to the number of vibrational states included. However,
the contributions of these cross sections are small. The other
transition cross sections are not quite as sensitive to the above
number. Because of the limitation to the number of vibrational
states which can be included in the calculations, it is diffi-
cult to compute the cross sections with Av >> 10. 1In any case,
these cross sections are very small and another method may be
applied to study those transitions.

The use of accurate input potentials is no less important
than the problem of convergence. Without the polarization
potential, the resonance peak cannot be produced in this low
energy region, in spite of the fact that the polarization
potential is much smaller than the static potential. This im-
plies that the cross sections are again sensitive to the input
potentials in the resonance energy region, while it is not so in
the non-resonance region. Furthermore, the exchange effect
of the present e-CO vibrationally inelastic scattering seems to
be more important than that of e—N2 case, as we have seen in
SECTION V.

The present theory contains only one parameter, that is,
the cutoff radius r, in the polarization potential. That para-
meter is not entirely phenomenological. It is approximately
given by the boundary of the electronic cloud of target

molecule. Beyond this radius L the polarization potential
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is effective. However, the present molecular structure

theory does not yield the precise value of L Thus, we had
to determine r, in an empirical manner as described in SECTION
IV.

The use of the orthogonalization approach for the exchange
effect (without any other modifications) is somewhat less
physical in the sense that the cutoff radius is smaller than
the above boundary. Thus the polarization potential is signi-
ficant inside the electronic cloud of the target molecule and
the cross sections are sensitive to r.. In Ref. 43 where the
(elastic) fixed-nuclei calculation was made for e-CO scattering
with the orthogonalization approach, Chandra obtained a small

cutoff radius, that is, Ly ® 1.6 a,-

On the other hand, the r. determined from close-coupling
calculation with the inclusion of the local exchange potential
is about the same as the above boundary. The polarization
potential thus obtained is negligible inside the electronic
cloud of target. The cross sections become less sensitive to
r. Moreover, the method of the local exchange potential for
the vibrational close-coupling calculation is simpler than the
orthogonalization approach and yields better results. Therefore,
it seems to be preferable for the present purpose.

However, it should be noted that, inside the electronic
density of target, the incident and target electrons more or
less experience the same potential. If the exact solutions of
the Schrodinger equation can be obtained, the scattering

waves should be orthogonal to the orbitals of target molecule.
Thus, the orthogonality condition is partly based on physi-
cal grounds. When the local exchange potentials are used as in
the present calculation, we are not sure how much above ortho-
gonality condition is satisfied, in other words, how small the
overlap integration between the scattering waves and the orbi-
tals of target are compared with 1. The addition of the




orthogonality condition to the present local exchange method
could improve the results of calculation. Therefore, the
study of the vibrational transition with local exchange +
orthogonalization approach will be profitable in the future.

In summary, we have successfully carried out a detailed
investigation of electron-carbon monoxide vibrational transi-
ticns in the low energy region within the framework of the hy-
brid theory. The present project represents significant ad-
vances on two important points. First, on the theoretical
side, the hybrid theory represents the most sophisticated ab
initio approach that is yet still amenable to practical calcu-
lations. The predictiveness of such an ab initio theory is il-
lustrated by the prediction of our theory, and the subsequent
confirmation of the Yale experiment, of a sharp resonance at 1.4 eV
for v=1+2 transitions (Ref. 41). Secondly, on the practical side,
we have developed an efficient state-of-art general computer
code for the hybrid theory approach in electron-diatomic molecule
scatterings. While much has been learned from the present pro-
ject, future applications to other important molecular species
are necessary to bring about a general theoretical understand-
ing of this important class of electron-molecule vibrational
transitions.

We would like to make some remarks on figures and tables.
The integral cross section curves of present theory in Figures
5-15 and 21 are based on the points with 0.1 eV increment of the
energy. These are joined smoothly to obtain the above curves

and it does not atfect any main features of the theoretical cross

sections. It is sufficient to take three significant figures of
the entries in Tables 3 and 4 for practical purposes, where
five significant figures are presented.
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APPENDIX
USER'S MANUAL OF THE COMPUTER CODE

The computer code named "HYBRID" that computes the cross
sections of the vibrational, and the simultaneous vibrational
and rotational transitions for low eneryy e-CO scattering is
described in this appendix. It will provide the guidelines for
the users of the present code. The formulations on which the

above computer program is based are explained in the main text of
the present report.

1. Description of Subroutines

MAIN (HYBRID)

This routine controls the overall procedures of the compu-.
tation. It calls most of the subroutines or function subroutines.
Furthermore, all input data are read in this routine. The impor-
tant input data are the maximum number of vibrational states in-
cluded, the vibrational energy levels, the vibrational wavefunc-
tions, the range of integration for the coupled differential
equation, the maximum number of partial waves, the harmonic com-
ponent of the static potential, the polarizabilities, the Fermi
momenta of the target molecule and the energy of the incident elec-
tron.

In addition, the vibrational transition matrix elements are
computed, in this routine, from the scattering wave functions ob-
tained in the subroutine COUPLE (see the following).

SUBROUTINE COUPLE

This routine solves the coupled differential equation, that
is, the Schrodinger equation. Most of the computer time is spent
in this subroutine. The following Stormer's 5-strip algorithm
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is used for the present purpose. The coupled differential equa-
tion is written as

U"(r) = V(r)U(r)

Here, V(r) is the NxN symmetric matrix and U(r) is the NxM matrix.
The N is the dimension of the coupled differential equation, that
is, the number of channels. M is the number of independent solu-
tions. It can be shown that

U(r) = 20(r-h)-U(r-2h) +&, CpVa(r) + 0(h®)
with

Vp(r) = Vv(r-nh)U(r-nh) (n =1,2,3,4,5)

c

1 299/240, C2 = -11/15, Cy = 97/120

The h is the integration step size.
SUBROUTINE CROSSV

This routine evaluates the integral and the differential
vibrational transition cross sections (including the elastic
scattering cross sections) from the vibrational transition matrix
thus obtained. All vibrational transition cross sections are
printed out here.

SUBROUTINE CROSSVJ

The simultaneous vibrational and rotational transition cross
section (for both integral and differential cross section) are
evaluated in this routine. It is called in MAIN only when ICVJ#0
(see subsection 2.) The above cross sections are printed out in
this routine.
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SUBROUTINE MINVR

This routine computes the inversion matrix A'l for a given

real non-singular matrix A. The matrix inversion is needed as a
part of algorithm in COUPLE.

SUBROUTINE MINV

The same as MINVR except for a given complex non-singular
matrix A. This routine is called in MAIN when the vibrational
transition matrix elements are evaluated.

SUBROUTINE SIMQR

This solves the simultaneous linear equation Ax=y for given
real non-singular matrix A and column vector y. It is called again
in MAIN when the vibrational transition matrix elements are eval-
uated.

SUBROUTINE BSSL

The spherical Bessel and Neumann functions are generated in
this routine for the purpose of matching the scattering solution
of the coupled differential equation in the asymptotic region
where the interaction potential is negligible. The matching pro-
cedure is needed to obtain the vibrational transition matrix
elements.

FUNCTION CLEBSH

This function subroutine computes the vector coupling coef-
ficients between two angular momentum eigenfunctions. It is the most
frequently called routine in CROSSV and CROSSVJ. It is also
called in MAIN when the vibrational matrix elements of the inter-

action potential are constructed as a preparation of close-coupling
calculation.
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FUNCTION RACAH

This function subroutine computes the vector recoupling co-
efficients between three angular momentum eigenfunctions. It is
called in CROSSVJ only when the simultaneous vibrational and
rotational transition cross sections are evaluated.

FUNCTION GAUSSN

The integrations are performed in this function subroutine
using the Gaussian 5-point quadrature formular. The range of in-
tegration is divided into equal intervals and the above formular
is applied in each interval. It is called in MAIN when the local

exchange potential is generated.

The calling sequences of the routines are shown in Figure
A-1. Here, [Ig > denotes that the routine B is called in
the routine A,

2. Input Data Structures

The information on the physical properties of target molecule
and the electron-molecule interaction potential are inputted in
the present program. These include the vibrational matrix ele-
ments for the harmonic components of the static potential with
specified maximum component, its mesh points, the vibrational
energy levels, the vibrational quantum numbers, the target mass,
the ionization potential, the vibrational wave function, the polari-
zabilities and the local Fermi momentum. Other inputted parameters
are those related to the numerical procedures to generate the
scattering wave functions by solving coupled differential equa-
tion and to compute the cross sections. Most of the input data
are read from (input) cards, except the following arrays; VWF
(vibrational wave function), VS (the vibrational matrix elements
for the harmonic components of static potential) and AKFER (local
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Fermi momentum). These data may be read from cards for the test-
ing purpose, but the numbers of elements of the arrays are so
large that it is not convenient in practice. Thus,; those are read
from (input) tape for the production run.

Input format statements consist of

100 FORMAT(8110)
101 FORMAT (8F10.4)
108 FORMAT(5E16.8)

The format statements 101 and 108 are for the floating point
number data. In general, when large number of significant
figures are needed for the accuracy of computation, the statement
108 is used in the present program. The input structures are de-
scribed below in the following forms,

(a) Card #x. Read statement.
(b) Card !#xl ~ Xy
(c) Tape, Record #y. Read statement.

Read statement.

Here, x, X1 X, and y are the sequence numbers. Only one card with
the sequence number x belongs to the data set of corresponding
read statement in (a), while the cards with the sequence numbers
from Xy to X, belong to the read statement in (b). In the case

of (b), the number of cards of the data set, xz-xl+1, is deter-
mined from the corresponding read statement, and the sequence
numbers Xy and x, should be computed consistently. Therefore,
these are expressed in terms of the variable integers ni‘s
(i=1,2,...). Since the sequence number Xy has aiready been deter-
mined from the previous data sets, we obtain the sequence number
X, from the number of cards of the present data set. For example,
in the following

(d) cCard 004~n1. Read statement,

let the number of cards belonging to this read statement be 2, then
from n1-4+1-2, we have nl=5. If the number of those cards is 1,
then nl-d. In this case, (d) is equivalent to

(e) Card #4. Read statement.
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Card #1. READ 100, NLEVX, INCO, NTR, LLMAX, KKVS
NLEVX: The maximum number of the vibrational states included.
INCO: The number of times the step sizes are doubled while
integrating the coupled differential equation.
NTR: The number of times the readjustments are made to im-

prove the accuracy while solving the coupled diffen-
tial equation.

LLMAX: The maximum harmonic component of interaction potential.

KKVS: The number of mesh points for input (interaction)
potential.

<sample> 2 3 5 8 50

Card #2. READ 100, (NBO(K), K = 1, INCO)
NBO(K) : At these mesh points, the stepsizes are doubled.

<sample> 9 30 50

Card #3. READ 100, (IV(K), K = 1 NTR)
IV(K): At these mesh points, the readjustments are made.

<sample> 60 100 200 350 0

(The last one is always 0 to terminate the readjustment).

Card ##4~n1. READ 108, EJJ, (EJ(I), I=1, NLEVX)

The number of cards in this data set, n1-4+1. is given as
nl-4+l = [(NLEVX+l) /5]

Here, [a) denotes the smallest integer n such that n 2 a.

EJJ: This variable is #0, when the electronic structures
of the target and the residual molecule are different.
Otherwise, it is =0.

EJ(I): The energy of the Ith vibrational level (in eV).
EJ(1)=0.
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<sample> 0.00000000E+00 0.00000000E+00 2.65720790E-01

Card .n1+1. READ 100, (NVF(I), I=1, NLEVX)

NVF(I): The vibrational quantum number for Ith level.
<sample> 0 1l
Card #n,+2. READ 101, TMASS

TMASS: The mass of the target molecule in amu (atomic
mass units).

<sample> 28.

Card in+3. READ 101, RNG, STEPNO, RMINO, RMTCH, RVNG, VX, RCUT

RNG: The whole range of integration for the coupled differen-
tial equation (in a.u.).
STEPNO: The number of mesh points for each half oscillation of
the scattering wave function.
RMINO: The starting point of the integration (in a.u.). Usually
it is the origin and thus is equal to 0.
RMTCH: The matching point of the integrated solution to the
known form of the asymptotic wave function (in a.u.).
RUNG: After this point, the interaction potential is negligibly
small- and it is set to zero (a.u.).
VX: The (approximate) maximum strength of the interaction
potential (in eV).
RCUT: The cut-off radius in the polarization potential (in a.u.)

<sample> 20.5 20. 0.0 20.25 20. 245. 1.945
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Card 0n1+4. READ 100, NRL

NRL: The number of equal interval for the range of inter-
nuclear separation. The Gaussian 5-point quadruature
formular is applied in each interval for integration of
the quantities related to the vibrational wave functions.

<gsample> 15

Card in1+5. READ 101, VRNG, RSTRT.

VRNG: The range of the internuclear separation considered for
the vibrational wave function (a.u.).
RSTRT: The smallest internuclear separation (a.u.).

<sample> 0.967 1.75
Card ln1+6. READ 101, (RT(K), K=1,7)

RT(K): The Kth internuclear separation for which the molecular
wave function of the target is given.

<sample> 1.8 1.898 2.015 2.132 2.249 2.366 2.483

Card Cnl+7. READ 100, NNG

NNG: The number of equal interval for the range of the angles
between the internuclear axis and the position vector of
the incident electron. The Gaussian 5-point quadrature
formular is applied in each interval for the integration.

<sample> 12
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ENB(K): The ionization potential (in a.u.) of the target molecule
at RT(K).

<sample> 0.52845 0.53698 0.54634 0.55437 0.56053 0.56427 0.56514

Tape, Record #1. DO208 N=1, NLEVX
READ (20,108) (VWF (N,K) ,K=1,KRL)
208 PRINT 108, .....
VWF(N,K): The vibrational wave function.
Here, KRL = 5*NRL

Card ##n1+9~n2. READ 101, (RVS(K), K=1, KKVS)

The number of cards in this data set,
nz-n1-9+l = [KKVS/8]

RVS(K): The Kth mesh point for the input potential.

<sample>

0.0

0.50
1.05
1.70
2.60
4.20
7.40
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Card lin2§l~n3. READ 108, (ALPO(IJ) ,1J=1,IJX)

Here IJX = NLEVX* (NLEVX+1l) /2.
The number of cards in this data set,
n3-n2-l+1 = [IJX/S)

ALPO(IJ): The 0.5 times the vibrational matrix elements of the
spherical polarizabilities.

<sample> 6.66363442E+00  -1.37499560E-01 6.70040101E+00
Card #'n3+1~n‘. READ 108, (ALP2(I1J),IJ=1,1JX)

The number of cards in this data set,
n4-n3-1+1 = [IJX/5]

ALP2(IJ): The 0.5 times the vibrational matrix elements of the
non-spherical polarizabilities.

<sample>1.20439007E+00 -1.18009803E-01 1.23198772E+00

Tape, Record #2. DO39 LL1=1, LLMX1l
DO 84 IJ=1, IJX
READ(21,108) (VS(1J,LL1,K) ,K=1,KKVS)
84 CONTINUE

DO 514 IJ=1JXx1,55
READ(21,108) (U(K) ,K=1,KKVS)
514 CONTINUE
39 CONTINUE

Here, LLMX1=LLMAX+l, IJX1=IJX+l

VS(1J,LL1,K): The vibrational matrix elements of the
harmonic components of the static potential.

U(K): Dummy variable. It simply completes the reading
of the present record of the tape.
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Tape, Record #3. DO 513 II=1,7

DO 513 J=1, KKVS
READ(22,108) (AKFER(II,J,K) .K=1,KNG)
513 CONTINUE

Here, KNG = S5*NNG
AKFER(II,J,K): The local Fermi momentum.

Card !n‘+1.

LMAX:

MMX:
<sample>
Card ln4+2.

KNNG:

READ 100, LMAX,MMN,MMX

The maximum partial wave for the angular momentum.
The minimum value of the internuclear projection
of the angular momenta.

The maximum value of the above projection.

4 0 2
READ 100, KNNG,IVN,IVX,ICVJ

The number of the scattering angles for the dif-
ferential cross section to be evaluated. The angles
are divided into equal intervals.

The lowest vibrational energy level for which the
cross sections are to be computed.

The (possible) highest vibrational energy level for
which the cross sections are to be computed.

If it is = 0, only vibrationally elastic and the
vibrational transition cross sections are to be com-
puted. If it is 0, the simultaneous vibrational and
rotational transition cross section together with the
above cross sections are to be computed.

31 1 10 0
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Card Qn‘+3. READ 100,LAMXV,LAMX

LAMXV: If it is =1, the momentum transfer cross sections
are to be calculated. If it is =0, no momentum
cross sections can be computed.

LAMX: The maximum harmonic component included when the dif-
ferential cross sections are evaluated in the vibra-
tional transitions.

<sample> 1 8
Card in‘+4. READ 100, JBN,JBX,LAMXJ

This data card should be deleted when ICVJ=0.

JBN: The lowest rotational state for which the cross sections
are to be computed.
JBX: The highest rotational state for which the cross sections
are to be computed.
LAMXJ: The maximum harmonic component included when the dif-
ferential cross sections are evaluated in the simul-
taneous vibrational and rotational transitions.

<sample> 1 10 8
Card ln‘+5~n5. READ 101, E
E: Total energy (the incident energy when the target

molecule is in the ground vibrational state) in eV.

The number of cards in this data set, ns-n‘-5+1, is equal to the
number of the energies for which the cross sections to be com-
puted plus one. Any negative energy should be punched on the
last card in this data set to terminate the whole program.

<sample> 4.2
-‘.2
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? 3. Output Structures

The outputs of the present program are in the form of the
print outputs. No cards are punched out. The input cards
0l1~n5 are printed out at the same time when they are read,
except the last card (#ns). The data in Tape, Record #l, which
are the vibrational wavefunctions from RSTRT to RSTRT+VRNG,
are also printed out. The data in other Record of this Tape
are not printed out because the number of elements in those data
is very large. For each total energy E, all the cross sections
are printed out. They are illustrated as follows:

<sample> E = 4.2000
NLEVL = 2
IMX = 593
MM =0
NMAX = 10
MM =1
NMAX = 8
MM = 2
NMAX = 6
EI = 4.2000 Vi =0 VF =0
XSECT = 7.76528843E+01 XSECTM = 6.25863523E+01
0.00000 1.44929E+01 6.00000 1.43962E+01 e o u
24.00000 1.30153E+01 30.00000 1.22427E+01 -
168.00000 6.50562E+00 174.00000 6.64248E+00 van e
EI = 4,2000 Vi =0 VF =1
XSECT = 3.96312693E-01 XSECTM = 3.99817954E~-01
§ 0.00000 1.32235E-02 6.00000 1.64626E-02 csvee

® & 0 0 5 0 5 0 0 000 B WS E LSO LNt e o0

168.00000 8.65896E-02 174.00000 9.24595E-02
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Here, the variables related to the cross sections are

EI: The incident energy of the electron (eV).

VI: The initial vibrational guantum number.

VF: The final vibrational quantum number.
XSECT: The integral cross section for this transition (a° ).
XSECTM: The momentum transfer cross section for this transition

2
(a° e

Note that EI is equal to the total energy E when VI = 0. The
entries in Column #1,3,5,7 of the above tabular output are the
scattering angles in degree and the entries in Column $2,4,6,8

2

are the differential cross sections (aoz/sr) for this transition.
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